Investigation on dip-transfer phosphor coating for light-emitting diodes: Experiments and VOF simulations

Xingjian Yu, Yupu Ma, B. Shang, Bin Xie, Qi Chen, Xiaobing Luo
{"title":"Investigation on dip-transfer phosphor coating for light-emitting diodes: Experiments and VOF simulations","authors":"Xingjian Yu, Yupu Ma, B. Shang, Bin Xie, Qi Chen, Xiaobing Luo","doi":"10.1109/ITHERM.2017.7992595","DOIUrl":null,"url":null,"abstract":"Dip-transfer phosphor coating method and its benefit on enhancing angular color uniformity (ACU) of white light-emitting diodes (LEDs) were previously reported, however, for applying this method in mass production, its fluid transfer mechanism and packaging consistency needs to be further investigated. The dip-transfer process is divided into two process, they are dipping process and transfer process. In our previous study, the dipping process were studied with experiments and simulations. In this study, we further studied the transfer process with numerical simulations based on combination of the volume of fluid (VOF) method and the dynamic mesh model, four parameters include post radius, withdrawal velocity, transfer height and phosphor gel viscosity were investigated. Besides, the packaging consistency of the dip-transfer phosphor coating method was studied with experiments. The simulated results show that the transfer volume decreases with the post radius, phosphor withdrawal velocity and phosphor gel viscosity, while keep the same with the transfer height. The experimental results show that the packaging consistency is highly rely on the transfer volume, with transfer volume varies from 0.71 μl to 6.12 ul, the maximum transfer volume deviation (MTVD) changes from 6.98% to 2.31%.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dip-transfer phosphor coating method and its benefit on enhancing angular color uniformity (ACU) of white light-emitting diodes (LEDs) were previously reported, however, for applying this method in mass production, its fluid transfer mechanism and packaging consistency needs to be further investigated. The dip-transfer process is divided into two process, they are dipping process and transfer process. In our previous study, the dipping process were studied with experiments and simulations. In this study, we further studied the transfer process with numerical simulations based on combination of the volume of fluid (VOF) method and the dynamic mesh model, four parameters include post radius, withdrawal velocity, transfer height and phosphor gel viscosity were investigated. Besides, the packaging consistency of the dip-transfer phosphor coating method was studied with experiments. The simulated results show that the transfer volume decreases with the post radius, phosphor withdrawal velocity and phosphor gel viscosity, while keep the same with the transfer height. The experimental results show that the packaging consistency is highly rely on the transfer volume, with transfer volume varies from 0.71 μl to 6.12 ul, the maximum transfer volume deviation (MTVD) changes from 6.98% to 2.31%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发光二极管用浸渍转移荧光粉涂层的研究:实验与VOF模拟
此前已经报道了浸转移荧光粉涂层方法及其对提高白光发光二极管(led)的角度颜色均匀性(ACU)的好处,但要将该方法应用于批量生产,还需要进一步研究其流体传递机理和封装一致性。浸渍转移过程分为浸渍过程和转移过程。在我们之前的研究中,通过实验和模拟对浸出过程进行了研究。在本研究中,基于流体体积法(VOF)和动态网格模型相结合的数值模拟进一步研究了传递过程,研究了传递半径、提取速度、传递高度和荧光粉凝胶粘度4个参数。此外,通过实验研究了浸渍转移荧光粉镀膜方法的封装一致性。模拟结果表明,传质体积随传质半径、吸出速度和凝胶粘度的增大而减小,而随传质高度的增大而减小。实验结果表明,封装一致性高度依赖于传输量,当传输量在0.71 ~ 6.12 μl范围内变化时,最大传输量偏差(MTVD)在6.98% ~ 2.31%之间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degradation characterization of thermal interface greases Gravity effects in microgap flow boiling Effect of electrode properties on performance of miniaturized vanadium redox flow battery Two-phase liquid cooling system for electronics, part 1: Pump-driven loop Development of algorithms for real-time estimation of smartphone surface temperature using embedded processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1