Identification of Ultrasonic Overlapped Signals based on Attenuation Matching and Sparse Deconvolution

Qiang Wang, Jie Mao, Guoxuan Lian
{"title":"Identification of Ultrasonic Overlapped Signals based on Attenuation Matching and Sparse Deconvolution","authors":"Qiang Wang, Jie Mao, Guoxuan Lian","doi":"10.1109/SPAWDA48812.2019.9019315","DOIUrl":null,"url":null,"abstract":"The difficulty of detecting the thickness of steel layer under high attenuation rubber mainly includes the signal-to-noise ratio and axial resolution. The ultrasonic chirp-coded excitation method with attenuation matching can obtain higher signal-to-noise ratio gain at the expense of axial resolution. However, the wider main lobe and the primary echo of rubber steel interface will seriously interfere with the judgment of steel thickness. In order to solve this problem, sparse deconvolution can be used to improve the resolution of echo based on the attenuation matching method. The results show that the signal-to-noise ratio gain brought by the attenuation matching method is conducive to the echo recognition of sparse deconvolution, and the design scheme of wavelet considering attenuation can obtain better deconvolution effect.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The difficulty of detecting the thickness of steel layer under high attenuation rubber mainly includes the signal-to-noise ratio and axial resolution. The ultrasonic chirp-coded excitation method with attenuation matching can obtain higher signal-to-noise ratio gain at the expense of axial resolution. However, the wider main lobe and the primary echo of rubber steel interface will seriously interfere with the judgment of steel thickness. In order to solve this problem, sparse deconvolution can be used to improve the resolution of echo based on the attenuation matching method. The results show that the signal-to-noise ratio gain brought by the attenuation matching method is conducive to the echo recognition of sparse deconvolution, and the design scheme of wavelet considering attenuation can obtain better deconvolution effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于衰减匹配和稀疏反卷积的超声重叠信号识别
高衰减橡胶下钢层厚度检测的难点主要包括信噪比和轴向分辨率。采用衰减匹配的超声啁啾编码激励方法可以在牺牲轴向分辨率的情况下获得更高的信噪比增益。然而,橡胶钢界面的主瓣较宽和一次回波会严重干扰钢板厚度的判断。为了解决这一问题,可以在衰减匹配方法的基础上采用稀疏反褶积来提高回波的分辨率。结果表明,衰减匹配方法带来的信噪比增益有利于稀疏反褶积的回波识别,考虑衰减的小波设计方案可以获得更好的反褶积效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of two Local Uniform Temperature Changes on Electrical Behaviors of a Piezoelectric Semiconductor Fiber A Fast Approach for the Structural Design of Frame-Like Fbar Based on 2d Plate Theory A Novel Dual-Rotor Ultrasonic Motor Applied for Underwater Propulsion Study on High-Temperature Properties of 1-3 Piezoelectric Composites The Principle of Detection and Location of a Target in Layered Media Containing Solids by Snapshot TR-RTM Mixed Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1