GreenLoRaWAN: An energy efficient and resilient LoRaWAN communication protocol

Thomas Dimakis, M. Louta, Thomas S. Kyriakidis, Alexandros-Apostolos A. Boulogeorgos, Konstantina Banti, Ioanna Karampelia, Nikos Papadimitriou
{"title":"GreenLoRaWAN: An energy efficient and resilient LoRaWAN communication protocol","authors":"Thomas Dimakis, M. Louta, Thomas S. Kyriakidis, Alexandros-Apostolos A. Boulogeorgos, Konstantina Banti, Ioanna Karampelia, Nikos Papadimitriou","doi":"10.1109/ISCC55528.2022.9912972","DOIUrl":null,"url":null,"abstract":"Long range wide area network (LoRaWAN) represents a promising low power wide area network (LPWAN) technology in the context of internet-of-things (IoT) that has recently attracted intense research interest. Due to the limited energy resources available on LoRaWAN constituent elements and intermittent power supply of gateways in harsh environments, an energy-efficient communication protocol is constituted of utmost importance in order to prolong network lifetime. Motivated by the aforementioned, this work presents a green, robust, and resilient communication protocol, namely GreenLoRaWAN, which increases energy efficiency, scalability and robustness of the LoRaWAN. The proposed protocol is evaluated by means of Monte Carlo simulations; Performance evaluation results acquired are very promising, revealing an important reduction in energy consumption and increase the duration of network lifetime.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Long range wide area network (LoRaWAN) represents a promising low power wide area network (LPWAN) technology in the context of internet-of-things (IoT) that has recently attracted intense research interest. Due to the limited energy resources available on LoRaWAN constituent elements and intermittent power supply of gateways in harsh environments, an energy-efficient communication protocol is constituted of utmost importance in order to prolong network lifetime. Motivated by the aforementioned, this work presents a green, robust, and resilient communication protocol, namely GreenLoRaWAN, which increases energy efficiency, scalability and robustness of the LoRaWAN. The proposed protocol is evaluated by means of Monte Carlo simulations; Performance evaluation results acquired are very promising, revealing an important reduction in energy consumption and increase the duration of network lifetime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GreenLoRaWAN:一种节能、弹性的LoRaWAN通信协议
长距离广域网(LoRaWAN)是物联网(IoT)背景下一种极具发展前景的低功耗广域网(LPWAN)技术,近年来引起了人们的广泛关注。由于LoRaWAN组成元件的可用能源有限,且网关在恶劣环境下的供电时断时续,因此构建一种节能的通信协议对于延长网络寿命至关重要。在上述激励下,本工作提出了一种绿色、鲁棒性和弹性的通信协议,即GreenLoRaWAN,提高了LoRaWAN的能源效率、可扩展性和鲁棒性。通过蒙特卡洛仿真对所提出的协议进行了评估;获得的性能评估结果非常有希望,显示出能源消耗的显著降低和网络生命周期的延长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1