Nick Merrill, Max T. Curran, Jong-Kai Yang, J. Chuang
{"title":"Classifying mental gestures with in-ear EEG","authors":"Nick Merrill, Max T. Curran, Jong-Kai Yang, J. Chuang","doi":"10.1109/BSN.2016.7516246","DOIUrl":null,"url":null,"abstract":"While brain-computer interfaces (BCI) based on electroencephalography (EEG) have improved dramatically over the past five years, their inconvenient, head-worn form factor has challenged their wider adoption. In this paper, we investigate how EEG signals collected from the ear could be used for “gestural” control of a brain-computer interface (BCI). Specifically, we investigate the efficacy of a support vector classifier (SVC) in distinguishing between mental tasks, or gestures, recorded by a modified, consumer headset. We find that an SVC reaches acceptable BCI accuracy for nine of the subjects in our pool (n=12), and distinguishes at least one pair of gestures better than chance for all subjects. User surveys highlight the need for longer-term research on user attitudes toward in-ear EEG devices, for discreet, non-invasive BCIs.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
While brain-computer interfaces (BCI) based on electroencephalography (EEG) have improved dramatically over the past five years, their inconvenient, head-worn form factor has challenged their wider adoption. In this paper, we investigate how EEG signals collected from the ear could be used for “gestural” control of a brain-computer interface (BCI). Specifically, we investigate the efficacy of a support vector classifier (SVC) in distinguishing between mental tasks, or gestures, recorded by a modified, consumer headset. We find that an SVC reaches acceptable BCI accuracy for nine of the subjects in our pool (n=12), and distinguishes at least one pair of gestures better than chance for all subjects. User surveys highlight the need for longer-term research on user attitudes toward in-ear EEG devices, for discreet, non-invasive BCIs.