Stand alone photovoltaic system control based on Artificial neural network and fuzzy logic

Ayeb Brahim, Y. Soufi, D. Ounnas, Dhaouadi Guiza
{"title":"Stand alone photovoltaic system control based on Artificial neural network and fuzzy logic","authors":"Ayeb Brahim, Y. Soufi, D. Ounnas, Dhaouadi Guiza","doi":"10.1109/icpea51060.2022.9791179","DOIUrl":null,"url":null,"abstract":"The maximum power point tracking (MPPT) is a necessary component in photovoltaic (PV) system. In this paper, intelligent techniques have been introduced fuzzy logic controller (FLC) and artificial neural network (ANN) are very successful to tracking the maximum power point (MPP). Incremental conductance (IC) is widely used for generate duty cycle in order to MPP searching, but it has a low efficiency in varying radiation and temperature. This paper proposed a hybrid technique based MPPT. We use ANN for select the optimal voltage, FLC for select and generate the optimal duty cycle. The ANN is used to predict the optimal voltage and FLC is used to generate the optimal duty cycle of tracking the MPP. This proposed technique is implemented in Matlab/Simulink software and compared with incremental conductance, covering the overshoot, time response, oscillation.","PeriodicalId":186892,"journal":{"name":"2022 5th International Conference on Power Electronics and their Applications (ICPEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Power Electronics and their Applications (ICPEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpea51060.2022.9791179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum power point tracking (MPPT) is a necessary component in photovoltaic (PV) system. In this paper, intelligent techniques have been introduced fuzzy logic controller (FLC) and artificial neural network (ANN) are very successful to tracking the maximum power point (MPP). Incremental conductance (IC) is widely used for generate duty cycle in order to MPP searching, but it has a low efficiency in varying radiation and temperature. This paper proposed a hybrid technique based MPPT. We use ANN for select the optimal voltage, FLC for select and generate the optimal duty cycle. The ANN is used to predict the optimal voltage and FLC is used to generate the optimal duty cycle of tracking the MPP. This proposed technique is implemented in Matlab/Simulink software and compared with incremental conductance, covering the overshoot, time response, oscillation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络和模糊逻辑的独立光伏系统控制
最大功率点跟踪(MPPT)是光伏发电系统中必不可少的组成部分。本文引入了模糊逻辑控制器(FLC)和人工神经网络(ANN)等智能技术,在最大功率点(MPP)跟踪方面取得了成功。增量电导(IC)是一种广泛应用于电源占空比的MPP搜索方法,但在变辐射和变温度条件下效率较低。本文提出了一种基于MPPT的混合技术。采用人工神经网络选择最优电压,FLC选择并生成最优占空比。神经网络用于预测最优电压,FLC用于生成跟踪MPP的最优占空比。在Matlab/Simulink软件中实现了该技术,并与增量电导进行了比较,涵盖了超调、时间响应、振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel DC/DC Three Port Converter with Fault-Tolerant Ability Fuzzy logic control of a photovoltaic systemconnected to grid Control for PMSG wind energy conversion system based on Adaptive Fuzzy Logic Controller Speed Tracking nonlinear Control using Second order Luenberger observer of Five Phase Permanent-Magnet Synchronous Motor Supplied by a Flying Capacitor Multi-cellular Inverter THD Analysis of Maximum Power Point Tracking Based on Kalman Filter Structure using Photovoltaic System Emulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1