Multi-target integration and annotation of single-cell RNA-sequencing data

Sapana Bhandari, Nathan P. Whitener, Konghao Zhao, Natalia Khuri
{"title":"Multi-target integration and annotation of single-cell RNA-sequencing data","authors":"Sapana Bhandari, Nathan P. Whitener, Konghao Zhao, Natalia Khuri","doi":"10.1145/3535508.3545511","DOIUrl":null,"url":null,"abstract":"Cells are the building blocks of human tissues and organs, and the distributions of different cell-types change due to environmental or disease conditions and treatments. Single-cell RNA sequencing is used to study heterogeneity of cells in biological samples. To date, computational approaches aided in the discovery of dominant and rare cell-types and facilitated the construction of cell atlases. Integration of new data with the existing reference atlases is an emerging computational problem, and this paper proposes to frame it as a multi-target prediction task, solvable using supervised machine learning. We systematically and rigorously test 63 different predictors on synthetic benchmarks with different properties. The best performing predictor has high Cohen's Kappa scores and low mean absolute errors in single-batch and multi-batch integration experiments.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cells are the building blocks of human tissues and organs, and the distributions of different cell-types change due to environmental or disease conditions and treatments. Single-cell RNA sequencing is used to study heterogeneity of cells in biological samples. To date, computational approaches aided in the discovery of dominant and rare cell-types and facilitated the construction of cell atlases. Integration of new data with the existing reference atlases is an emerging computational problem, and this paper proposes to frame it as a multi-target prediction task, solvable using supervised machine learning. We systematically and rigorously test 63 different predictors on synthetic benchmarks with different properties. The best performing predictor has high Cohen's Kappa scores and low mean absolute errors in single-batch and multi-batch integration experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞rna测序数据的多靶点整合与标注
细胞是人体组织和器官的组成部分,不同细胞类型的分布会因环境或疾病状况和治疗而改变。单细胞RNA测序用于研究生物样品中细胞的异质性。迄今为止,计算方法有助于发现显性和罕见的细胞类型,并促进了细胞图谱的构建。新数据与现有参考地图集的集成是一个新兴的计算问题,本文提出将其作为一个多目标预测任务,使用监督机器学习来解决。我们在具有不同属性的合成基准上系统地、严格地测试了63种不同的预测因子。在单批和多批集成实验中,表现最好的预测器具有高的Cohen's Kappa分数和低的平均绝对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining post-pandemic behaviors influencing human mobility trends Geographic ensembles of observations using randomised ensembles of autoregression chains: ensemble methods for spatio-temporal time series forecasting of influenza-like illness Trajectory-based and sound-based medical data clustering Session details: Graphs & networks TopographyNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1