Scalable Triangle Counting on Distributed-Memory Systems

Seher Acer, Abdurrahman Yasar, S. Rajamanickam, Michael M. Wolf, Ümit V. Çatalyürek
{"title":"Scalable Triangle Counting on Distributed-Memory Systems","authors":"Seher Acer, Abdurrahman Yasar, S. Rajamanickam, Michael M. Wolf, Ümit V. Çatalyürek","doi":"10.1109/HPEC.2019.8916302","DOIUrl":null,"url":null,"abstract":"Triangle counting is a foundational graph-analysis kernel in network science. It has also been one of the challenge problems for the “Static Graph Challenge”. In this work, we propose a novel, hybrid, parallel triangle counting algorithm based on its linear algebra formulation. Our framework uses MPI and Cilk to exploit the benefits of distributed-memory and shared-memory parallelism, respectively. The problem is partitioned among MPI processes using a two-dimensional (2D) Cartesian block partitioning. One-dimensional (1D) rowwise partitioning is used within the Cartesian blocks for shared-memory parallelism using the Cilk programming model. Besides exhibiting very good strong scaling behavior in almost all tested graphs, our algorithm achieves the fastest time on the 1.4B edge real-world twitter graph, which is 3.217 seconds, on 1,092 cores. In comparison to past distributed-memory parallel winners of the graph challenge, we demonstrate a speed up of 2.7× on this twitter graph. This is also the fastest time reported for parallel triangle counting on the twitter graph when the graph is not replicated.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Triangle counting is a foundational graph-analysis kernel in network science. It has also been one of the challenge problems for the “Static Graph Challenge”. In this work, we propose a novel, hybrid, parallel triangle counting algorithm based on its linear algebra formulation. Our framework uses MPI and Cilk to exploit the benefits of distributed-memory and shared-memory parallelism, respectively. The problem is partitioned among MPI processes using a two-dimensional (2D) Cartesian block partitioning. One-dimensional (1D) rowwise partitioning is used within the Cartesian blocks for shared-memory parallelism using the Cilk programming model. Besides exhibiting very good strong scaling behavior in almost all tested graphs, our algorithm achieves the fastest time on the 1.4B edge real-world twitter graph, which is 3.217 seconds, on 1,092 cores. In comparison to past distributed-memory parallel winners of the graph challenge, we demonstrate a speed up of 2.7× on this twitter graph. This is also the fastest time reported for parallel triangle counting on the twitter graph when the graph is not replicated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式内存系统上的可伸缩三角计数
三角计数是网络科学中一个基本的图分析核心。这也是“静态图形挑战赛”的挑战问题之一。在这项工作中,我们提出了一种基于线性代数公式的新型混合并行三角形计数算法。我们的框架分别使用MPI和Cilk来利用分布式内存和共享内存并行性的优势。该问题在MPI进程之间使用二维(2D)笛卡尔块分区进行分区。使用Cilk编程模型,在笛卡尔块中使用一维(1D)逐行分区来实现共享内存并行性。除了在几乎所有测试图中表现出非常好的强缩放行为外,我们的算法在1.4B边缘真实twitter图上实现了最快的时间,在1,092个内核上达到3.217秒。与过去图表挑战的分布式内存并行获胜者相比,我们在这个twitter图表上展示了2.7倍的速度提升。当twitter图没有被复制时,这也是在twitter图上进行平行三角形计数的最快时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1