Representing medical images with partitioning trees

K. Subramanian, B. Naylor
{"title":"Representing medical images with partitioning trees","authors":"K. Subramanian, B. Naylor","doi":"10.1109/VISUAL.1992.235214","DOIUrl":null,"url":null,"abstract":"The binary space partitioning tree is a method of converting a discrete space representation to a particular continuous space representation. The conversion is accomplished using standard discrete space operators developed for edge detection, followed by a Hough transform to generate candidate hyperplanes that are used to construct the partitioning tree. The result is a segmented and compressed image represented in continuous space suitable for elementary computer vision operations and improved image transmission/storage. Examples of 256*256 medical images for which the compression is estimated to range between 1 and 0.5 b/pixel are given.<<ETX>>","PeriodicalId":164549,"journal":{"name":"Proceedings Visualization '92","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1992.235214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The binary space partitioning tree is a method of converting a discrete space representation to a particular continuous space representation. The conversion is accomplished using standard discrete space operators developed for edge detection, followed by a Hough transform to generate candidate hyperplanes that are used to construct the partitioning tree. The result is a segmented and compressed image represented in continuous space suitable for elementary computer vision operations and improved image transmission/storage. Examples of 256*256 medical images for which the compression is estimated to range between 1 and 0.5 b/pixel are given.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分区树表示医学图像
二叉空间划分树是一种将离散空间表示转换为特定连续空间表示的方法。转换是使用为边缘检测开发的标准离散空间算子完成的,然后使用霍夫变换生成用于构造分区树的候选超平面。结果是在适合基本计算机视觉操作和改进的图像传输/存储的连续空间中表示的分割和压缩图像。给出了估计压缩范围在1到0.5 b/像素之间的256*256医学图像的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual query specification in a multimedia database system The microscopist's workstation Visualization of cardiac bioelectricity-a case study Visualizing a three dimensional hydrodynamic model Automated design of virtual worlds for visualizing multivariate relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1