A Study on the Significance of Software Metrics in Defect Prediction

Ye Xia, G. Yan, Qianran Si
{"title":"A Study on the Significance of Software Metrics in Defect Prediction","authors":"Ye Xia, G. Yan, Qianran Si","doi":"10.1109/ISCID.2013.199","DOIUrl":null,"url":null,"abstract":"In the case of metrics-based software defect prediction, an intelligent selection of metrics plays an important role in improving the model performance. In this paper, we use different ways for feature selection and dimensionality reduction to determine the most important software metrics. Three different classifiers are utilized, namely Naïve Bayes, support vector machine and decision tree. On the publicly NASA data, a comparative experiment results show that instead of 22 or more metrics, less than 10 metrics can get better performance.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In the case of metrics-based software defect prediction, an intelligent selection of metrics plays an important role in improving the model performance. In this paper, we use different ways for feature selection and dimensionality reduction to determine the most important software metrics. Three different classifiers are utilized, namely Naïve Bayes, support vector machine and decision tree. On the publicly NASA data, a comparative experiment results show that instead of 22 or more metrics, less than 10 metrics can get better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软件度量在缺陷预测中的意义研究
在基于度量的软件缺陷预测中,度量的智能选择在改进模型性能方面起着重要的作用。在本文中,我们使用不同的方法进行特征选择和降维,以确定最重要的软件度量。使用了三种不同的分类器,分别是Naïve贝叶斯、支持向量机和决策树。在公开的NASA数据上,对比实验结果表明,少于10个指标可以获得更好的性能,而不是22个或更多的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Swarm Optimization-Least Squares Support Vector Regression with Multi-scale Wavelet Kernel Application of BP Neural Networks to Testing the Reasonableness of Flood Season Staging Balancing an Inverted Pendulum with an EEG-Based BCI Multi-feature Visual Tracking Using Adaptive Unscented Kalman Filtering Design of a Novel Portable ECG Monitor for Heart Health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1