{"title":"A Comparison Study of Machine Learning Enabled Filtering Methods for Battery Management","authors":"Sara Kohtz, Pingfeng Wang","doi":"10.1109/ICPHM49022.2020.9187029","DOIUrl":null,"url":null,"abstract":"Prognostics and health management has become a prominent field for the analyses of dynamic system degradation. Specifically, methods for forecasting remaining useful life have been studied extensively, including some hybrid approaches that have indicated successful results. Mainly, a combination of machine learning and filtering techniques have shown to be the most effective. Currently, there exists a need to determine an optimal general method for remaining useful life estimation in complex systems. This paper focuses on a comparison between successful hybrid approaches. The methods are applied to modeling capacity degradation in lithium-ion batteries, with the NASA dataset utilized for this study.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Prognostics and health management has become a prominent field for the analyses of dynamic system degradation. Specifically, methods for forecasting remaining useful life have been studied extensively, including some hybrid approaches that have indicated successful results. Mainly, a combination of machine learning and filtering techniques have shown to be the most effective. Currently, there exists a need to determine an optimal general method for remaining useful life estimation in complex systems. This paper focuses on a comparison between successful hybrid approaches. The methods are applied to modeling capacity degradation in lithium-ion batteries, with the NASA dataset utilized for this study.