A new neural network approach for fault location of distribution network

F. Yan, Wenxuan Liu, Lin Tian
{"title":"A new neural network approach for fault location of distribution network","authors":"F. Yan, Wenxuan Liu, Lin Tian","doi":"10.1109/MEC.2011.6025718","DOIUrl":null,"url":null,"abstract":"On the basis of analysis on the characteristics of single phase grounding fault occurred in small current neutral grounding system, a fault location method using Learn Vector Quantization Neural Network is put forward. Combined LVQ Neural Network with C-type of traveling wave location method, the purpose of precise location can be achieved. A classical BP (Back-Propagation) Neural Network has been developed to solve the same problem for comparison. The simulation results of ATP-EMTP and MATLAB show that the LVQ Neural Network is quite effective and superior to BP Neural Network in fault location.","PeriodicalId":386083,"journal":{"name":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2011.6025718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

On the basis of analysis on the characteristics of single phase grounding fault occurred in small current neutral grounding system, a fault location method using Learn Vector Quantization Neural Network is put forward. Combined LVQ Neural Network with C-type of traveling wave location method, the purpose of precise location can be achieved. A classical BP (Back-Propagation) Neural Network has been developed to solve the same problem for comparison. The simulation results of ATP-EMTP and MATLAB show that the LVQ Neural Network is quite effective and superior to BP Neural Network in fault location.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的配电网故障定位神经网络方法
在分析小电流中性点接地系统单相接地故障特点的基础上,提出了一种基于学习向量量化神经网络的故障定位方法。将LVQ神经网络与c型行波定位方法相结合,可以达到精确定位的目的。一个经典的BP(反向传播)神经网络已被开发来解决同样的问题,以供比较。ATP-EMTP和MATLAB仿真结果表明,LVQ神经网络在故障定位方面具有较好的效果,且优于BP神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data acquisition system for energy management based on OPC protocol Research on the electric field of electrorotation effect using passive electrostatic human body detection system Research in energy metering device of natural gas Development of linear servo control system for CNC machine tool based on DSP Sliding mode control based on passive nonlinear observer for dynamic positioning vessels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1