{"title":"Inferring Stochastic L-Systems Using a Hybrid Greedy Algorithm","authors":"Jason Bernard, Ian McQuillan","doi":"10.1109/ICTAI.2018.00097","DOIUrl":null,"url":null,"abstract":"Stochastic context-free Lindenmayer systems (S0L-systems) are a formal grammar system that produce sequences of strings based on parallel rewriting rules over a probability distribution. The resulting words can be treated as symbolic instructions to create visual models by simulation software. S0L-system have been used to model different natural and engineered processes. One issue with S0L-systems is the difficulty in determining an S0L-systems to model a process. Current approaches either infer S0L-systems based on aesthetics or rely on a priori expert knowledge. This work introduces PMIT-S0L, a tool for inferring S0L-systems from a sequence of strings generated by a (hidden) L-system, using a greedy algorithm hybridized with search algorithms. PMIT-S0L was evaluated using 3600 procedurally generated S0L-systems and is able to infer the test set with 100% success so long as there are 12 or less rewriting rules in total in the L-system. This makes PMIT-S0L applicable for many practical applications.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"13 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Stochastic context-free Lindenmayer systems (S0L-systems) are a formal grammar system that produce sequences of strings based on parallel rewriting rules over a probability distribution. The resulting words can be treated as symbolic instructions to create visual models by simulation software. S0L-system have been used to model different natural and engineered processes. One issue with S0L-systems is the difficulty in determining an S0L-systems to model a process. Current approaches either infer S0L-systems based on aesthetics or rely on a priori expert knowledge. This work introduces PMIT-S0L, a tool for inferring S0L-systems from a sequence of strings generated by a (hidden) L-system, using a greedy algorithm hybridized with search algorithms. PMIT-S0L was evaluated using 3600 procedurally generated S0L-systems and is able to infer the test set with 100% success so long as there are 12 or less rewriting rules in total in the L-system. This makes PMIT-S0L applicable for many practical applications.