{"title":"Boundary Conditions for Incoherent Quantum Transport","authors":"M. Frey, A. Esposito, A. Schenk","doi":"10.1109/IWCE.2009.5091088","DOIUrl":null,"url":null,"abstract":"In this paper, the influence of coherent and incoherent boundary conditions for quantum transport through silicon nanowires is studied. An iteration scheme to compute an approximate self-energy in the contacts is proposed. The focus lies on the impact on the self-consistent electrostatics and the current computation. In addition, the scaling behavior with increasing device lengths is shown.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, the influence of coherent and incoherent boundary conditions for quantum transport through silicon nanowires is studied. An iteration scheme to compute an approximate self-energy in the contacts is proposed. The focus lies on the impact on the self-consistent electrostatics and the current computation. In addition, the scaling behavior with increasing device lengths is shown.