Electric load forecasting by SVR with chaotic ant swarm optimization

Wei‐Chiang Hong, Chien-Yuan Lai, Wei-Mou Hung, Yucheng Dong
{"title":"Electric load forecasting by SVR with chaotic ant swarm optimization","authors":"Wei‐Chiang Hong, Chien-Yuan Lai, Wei-Mou Hung, Yucheng Dong","doi":"10.1109/ICCIS.2010.5518572","DOIUrl":null,"url":null,"abstract":"Support vector regression (SVR) has revealed the strong potential in accurate electric load forecasting, particularly by employing effective evolutionary algorithms to determine suitable values of its three parameters. Based on previous research results, these employed evolutionary algorithms themselves also have drawbacks, such as premature convergence, slowly reaching the global optimal solution, and trapping into a local optimum in parameters determination of a SVR model. This paper presents a short-term electric load forecasting model which applies a novel algorithm, namely chaotic ant swarm optimization (CAS), to improve the forecasting performance by searching suitable parameters combination in a SVR forecasting model. The proposed CAS combines with the chaotic behavior of single ant and self-organization behavior of ant colony in the foraging process to overcome premature local optimum. The empirical results indicate that the SVR model with CAS (SVRCAS) results in better forecasting performance than the other methods, namely SVRCPSO (SVR with chaotic PSO), SVRCGA (SVR with chaotic GA), regression model, and ANN model.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Support vector regression (SVR) has revealed the strong potential in accurate electric load forecasting, particularly by employing effective evolutionary algorithms to determine suitable values of its three parameters. Based on previous research results, these employed evolutionary algorithms themselves also have drawbacks, such as premature convergence, slowly reaching the global optimal solution, and trapping into a local optimum in parameters determination of a SVR model. This paper presents a short-term electric load forecasting model which applies a novel algorithm, namely chaotic ant swarm optimization (CAS), to improve the forecasting performance by searching suitable parameters combination in a SVR forecasting model. The proposed CAS combines with the chaotic behavior of single ant and self-organization behavior of ant colony in the foraging process to overcome premature local optimum. The empirical results indicate that the SVR model with CAS (SVRCAS) results in better forecasting performance than the other methods, namely SVRCPSO (SVR with chaotic PSO), SVRCGA (SVR with chaotic GA), regression model, and ANN model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混沌蚁群优化的SVR电力负荷预测
支持向量回归(SVR)在准确预测电力负荷方面显示出强大的潜力,特别是通过采用有效的进化算法来确定其三个参数的合适值。从以往的研究结果来看,这些采用的进化算法本身在SVR模型的参数确定中也存在过早收敛、达到全局最优解速度慢、陷入局部最优等缺点。本文提出了一种短期电力负荷预测模型,该模型采用混沌蚁群优化算法,通过在支持向量回归预测模型中搜索合适的参数组合来提高预测性能。该算法将蚁群觅食过程中的混沌行为和蚁群的自组织行为相结合,克服了蚁群觅食过程中过早的局部最优行为。实证结果表明,结合CAS的SVR模型(SVRCAS)的预测效果优于SVRCPSO (SVR with chaotic PSO)、SVRCGA (SVR with chaotic GA)、回归模型和ANN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic shift mechanism of continuous attractors in a class of recurrent neural networks Design space exploration of a 2-D DWT system architecture Cascaded control of 3D path following for an unmanned helicopter A load transfer scheme of radial distribution feeders considering distributed generation FDI of disturbed nonlinear systems: A nonlinear UIO approach with SOS techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1