Boosting Trust in Collaborative Recommender Agents with Interest Similarity

D. Godoy, A. Amandi
{"title":"Boosting Trust in Collaborative Recommender Agents with Interest Similarity","authors":"D. Godoy, A. Amandi","doi":"10.1109/SBSC.2008.22","DOIUrl":null,"url":null,"abstract":"Inserted in communities of people with similar interests, recommender agents predict the behavior of users based on the behavior of other like-minded people. In addition to user similarity, trustworthiness is a factor that agents have to consider in the selection of reliable partners for collaboration. Previous works focused on modeling trust in recommender systems base on global user profile similarity or history of exchanged opinions. In this paper we propose a novel approach for agent-based recommendation in which trust is independently learned and evolved for each pair of interest topics two users have in common. Experimental results show that agents learning who to trust about certain topics reach better levels of precision than considering exclusively user similarity.","PeriodicalId":139251,"journal":{"name":"2008 Simpósio Brasileiro de Sistemas Colaborativos","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Simpósio Brasileiro de Sistemas Colaborativos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBSC.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inserted in communities of people with similar interests, recommender agents predict the behavior of users based on the behavior of other like-minded people. In addition to user similarity, trustworthiness is a factor that agents have to consider in the selection of reliable partners for collaboration. Previous works focused on modeling trust in recommender systems base on global user profile similarity or history of exchanged opinions. In this paper we propose a novel approach for agent-based recommendation in which trust is independently learned and evolved for each pair of interest topics two users have in common. Experimental results show that agents learning who to trust about certain topics reach better levels of precision than considering exclusively user similarity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
兴趣相似度对协同推荐代理信任的提升
在有相似兴趣的人的社区中插入,推荐代理根据其他志同道合的人的行为来预测用户的行为。除了用户相似度之外,代理在选择可靠的合作伙伴时还必须考虑可信度。以前的工作主要集中在基于全局用户档案相似性或交换意见历史的推荐系统中的信任建模。在本文中,我们提出了一种新的基于智能体的推荐方法,其中信任是针对两个用户共同的每对兴趣主题独立学习和进化的。实验结果表明,在特定主题上学习信任谁的智能体比只考虑用户相似度的智能体达到了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilização do Rastreamento Ocular para Visualização do Local de Atenção em Sistemas de Edição Colaborativos Negociação-Colaboração nas Revisões Técnicas Formais de Especificações Funcionais Uma Ferramenta Web de Apoio à Coordenação de Projetos em um Ambiente Colaborativo The Use of Visualization for Analysis and Recommendation on People Replacement on Virtual Communities and Teams in the Brazilian Scientific Scenario RaisAware: Uma Ferramenta de Auxílio à Engenharia de Software Colaborativa Baseada em Análises de Dependências
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1