DataCat: Attention-based Open Government Data (OGD) Category Recommendation Framework

Natnaree Sornkongdang, Nuttapong Sanglerdsinlapachai, Chutiporn Anutariya
{"title":"DataCat: Attention-based Open Government Data (OGD) Category Recommendation Framework","authors":"Natnaree Sornkongdang, Nuttapong Sanglerdsinlapachai, Chutiporn Anutariya","doi":"10.1109/iSAI-NLP54397.2021.9678174","DOIUrl":null,"url":null,"abstract":"A data category recommendation framework for Thailand’s open government data portal (ThOGD) is proposed to assist data providers when publishing and registering a new dataset into the portal’s data catalog. However, existing approaches such as a multi-label classification problem, have not adopted the semantic features of data categories sufficiently. Deep learning model for Natural Language Processing has recently demonstrated to achieve high potential in learning the different degrees of semantic feature abstraction because all layers of multi-head attention blocks are provided with different fragments of metadata descriptions and corresponding tags. To obtain a robust recommendation result, this paper proposes DataCat: a Category Recommendation Framework using the attention-based framework through the ThOGD portal. Within this framework, the integrated multi-layers with particular semantic information are directly attached to the output layer of a network to enhance the effectiveness of information retrieval. The results point out that the attention-based framework has a weighted effect on loss of optimization. The performance when looking at the macro average of precision and F1-score improves by 0.664% and 0.557%, respectively. The micro average of those improves by 0.806%, and 0.698%, respectively.","PeriodicalId":339826,"journal":{"name":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"720 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP54397.2021.9678174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A data category recommendation framework for Thailand’s open government data portal (ThOGD) is proposed to assist data providers when publishing and registering a new dataset into the portal’s data catalog. However, existing approaches such as a multi-label classification problem, have not adopted the semantic features of data categories sufficiently. Deep learning model for Natural Language Processing has recently demonstrated to achieve high potential in learning the different degrees of semantic feature abstraction because all layers of multi-head attention blocks are provided with different fragments of metadata descriptions and corresponding tags. To obtain a robust recommendation result, this paper proposes DataCat: a Category Recommendation Framework using the attention-based framework through the ThOGD portal. Within this framework, the integrated multi-layers with particular semantic information are directly attached to the output layer of a network to enhance the effectiveness of information retrieval. The results point out that the attention-based framework has a weighted effect on loss of optimization. The performance when looking at the macro average of precision and F1-score improves by 0.664% and 0.557%, respectively. The micro average of those improves by 0.806%, and 0.698%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DataCat:基于关注的开放政府数据(OGD)类别推荐框架
提出了一个针对泰国开放政府数据门户(ThOGD)的数据类别推荐框架,以帮助数据提供者将新数据集发布并注册到门户的数据目录中。然而,现有的方法,如多标签分类问题,并没有充分利用数据类别的语义特征。自然语言处理的深度学习模型在学习不同程度的语义特征抽象方面具有很大的潜力,因为多层多头注意块的每一层都提供了不同的元数据描述片段和相应的标签。为了获得稳健的推荐结果,本文通过ThOGD门户提出了基于注意力的类别推荐框架DataCat: a Category recommendation Framework。在该框架中,将具有特定语义信息的集成多层直接附加到网络的输出层,以提高信息检索的有效性。结果表明,基于注意力的框架对优化损失具有加权效应。当观察精度和f1分数的宏观平均值时,性能分别提高了0.664%和0.557%。其微观平均值分别提高了0.806%和0.698%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replay Attack Detection in Automatic Speaker Verification Based on ResNeWt18 with Linear Frequency Cepstral Coefficients Image Processing for Classification of Rice Varieties with Deep Convolutional Neural Networks KaleCare: Smart Farm for Kale with Pests Detection System using Machine Learning The comparison of the proposed recommended system with actual data sylbreak4all: Regular Expressions for Syllable Breaking of Nine Major Ethnic Languages of Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1