A Stochastic Volatility and Leverage: Application to a Panel of S&P Stocks

S. Ozturk, J. Richard
{"title":"A Stochastic Volatility and Leverage: Application to a Panel of S&P Stocks","authors":"S. Ozturk, J. Richard","doi":"10.2139/ssrn.2052034","DOIUrl":null,"url":null,"abstract":"We estimate stochastic volatility leverage models for a panel of stock returns for 24 S&P 500 firms from six industries. News are measured as differences between daily return and a monthly moving average of past returns. We estimate the models by maximum likelihood using an Efficient Importance Sampling method which produces numerically highly accurate estimates of the likelihood and related test-statistics. We find significant leverage effects for all 24 stocks. These effects are fairly consistent within each industry but there are significant differences across two groups of industries. Our models produce significant improvement in volatility predictability.","PeriodicalId":214104,"journal":{"name":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometric Modeling in Financial Economics - Econometrics of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2052034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We estimate stochastic volatility leverage models for a panel of stock returns for 24 S&P 500 firms from six industries. News are measured as differences between daily return and a monthly moving average of past returns. We estimate the models by maximum likelihood using an Efficient Importance Sampling method which produces numerically highly accurate estimates of the likelihood and related test-statistics. We find significant leverage effects for all 24 stocks. These effects are fairly consistent within each industry but there are significant differences across two groups of industries. Our models produce significant improvement in volatility predictability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机波动和杠杆:应用于标准普尔股票面板
我们对来自六个行业的24家标准普尔500指数公司的股票回报面板的随机波动率杠杆模型进行了估计。新闻是用每日收益和过去收益的月移动平均值之间的差异来衡量的。我们使用高效重要抽样方法通过最大似然来估计模型,该方法在数值上对似然和相关测试统计量进行了高度准确的估计。我们发现所有24只股票都存在显著的杠杆效应。这些影响在每个行业内都相当一致,但在两组行业之间存在显著差异。我们的模型显著提高了波动性的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Growing Pains: International Instability and Equity Market Returns Valuing American Options Using Fast Recursive Projections Momentum and Reversal: Does What Goes Up Always Come Down? Macro Variables and the Components of Stock Returns Variance Risk Premium and VIX Pricing: A Simple GARCH Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1