Prediction Vehicle’s Speed with Using Artificial Neural Networks

A. Fedorova, Viktar Beliautsou, I. Anikin
{"title":"Prediction Vehicle’s Speed with Using Artificial Neural Networks","authors":"A. Fedorova, Viktar Beliautsou, I. Anikin","doi":"10.1109/RusAutoCon49822.2020.9208089","DOIUrl":null,"url":null,"abstract":"We propose an approach for the vehicle’s speed prediction based on artificial neural networks. Different types of artificial neural networks were considered including MLP and RNN. A complex urban route in Kazan city was chosen for data gathering and making experiments. We demonstrated that it is possible to obtain sufficient accuracy for speed prediction based on limited source data. We got the prediction accuracy as 99.6% for the first future second and 94% for the tenth future second. Simple RNN showed better results for given data. We can use the suggested approach for designing intellectual automatic transmission systems and other intelligent transport systems applications.","PeriodicalId":101834,"journal":{"name":"2020 International Russian Automation Conference (RusAutoCon)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon49822.2020.9208089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an approach for the vehicle’s speed prediction based on artificial neural networks. Different types of artificial neural networks were considered including MLP and RNN. A complex urban route in Kazan city was chosen for data gathering and making experiments. We demonstrated that it is possible to obtain sufficient accuracy for speed prediction based on limited source data. We got the prediction accuracy as 99.6% for the first future second and 94% for the tenth future second. Simple RNN showed better results for given data. We can use the suggested approach for designing intellectual automatic transmission systems and other intelligent transport systems applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的车辆速度预测
提出了一种基于人工神经网络的车辆速度预测方法。考虑了不同类型的人工神经网络,包括MLP和RNN。选取喀山市一条复杂的城市路线进行数据采集和实验。我们证明了基于有限源数据的速度预测有可能获得足够的精度。我们得到的预测精度为99.6%的第一未来秒和94%的第十未来秒。对于给定的数据,简单RNN显示出更好的结果。我们可以将该方法用于设计智能自动变速器系统和其他智能交通系统的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organizing Cyber-Physical Homogeneous Production Environments On Algorithms for the Minimum Link Disjoint Paths Problem Determining the Hazard Quotient of Destructive Actions of Automated Process Control Systems Information Security Violator Device for Measuring Parameters of Coils of Induction Magnetometers Simulation of Process of Reproducing the Measuring Signal of a Magnetostrictive Displacement Transducer on Ultrasonic Torsion Waves for a Triangular Excitation Pulse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1