A Model-Based Approach to Determine the Number of Scenarios and Scenario Probabilities for Loan Loss Provision Calculations Under the Accounting Standards of IFRS 9 and US-GAAP CECL

Oliver Blümke
{"title":"A Model-Based Approach to Determine the Number of Scenarios and Scenario Probabilities for Loan Loss Provision Calculations Under the Accounting Standards of IFRS 9 and US-GAAP CECL","authors":"Oliver Blümke","doi":"10.2139/ssrn.3679940","DOIUrl":null,"url":null,"abstract":"The accounting standards of the International Financial Reporting Standards (IFRS) and the United States Generally Accepted Accounting Principles (US-GAAP) require from financial institutions to consider multiple macroeconomic scenarios when calculating loan loss provisions. At present, however, it is unclear how to determine the number of scenarios and scenario probabilities without resorting to - often subjective - expert judgement. The paper discusses a model-based approach and proposes to use hidden Markov models to determine the number of relevant scenarios and scenario probabilities. The tool of the hidden Markov model allows to use established model selection criteria, such as the Akaike information criterion, to decide on the number of scenarios. Hidden Markov models also provide estimates of the transition matrix of the hidden states, which constitute the required conditional scenario probabilities. The tool of the hidden Markov model is discussed by using a time series of defaults from Standard & Poor's.","PeriodicalId":306152,"journal":{"name":"Risk Management eJournal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3679940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accounting standards of the International Financial Reporting Standards (IFRS) and the United States Generally Accepted Accounting Principles (US-GAAP) require from financial institutions to consider multiple macroeconomic scenarios when calculating loan loss provisions. At present, however, it is unclear how to determine the number of scenarios and scenario probabilities without resorting to - often subjective - expert judgement. The paper discusses a model-based approach and proposes to use hidden Markov models to determine the number of relevant scenarios and scenario probabilities. The tool of the hidden Markov model allows to use established model selection criteria, such as the Akaike information criterion, to decide on the number of scenarios. Hidden Markov models also provide estimates of the transition matrix of the hidden states, which constitute the required conditional scenario probabilities. The tool of the hidden Markov model is discussed by using a time series of defaults from Standard & Poor's.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在IFRS 9和US-GAAP CECL会计准则下确定贷款损失准备计算的情景数量和情景概率的基于模型的方法
国际财务报告准则(IFRS)和美国公认会计准则(US-GAAP)的会计准则要求金融机构在计算贷款损失准备金时考虑多种宏观经济情景。然而,目前尚不清楚如何在不诉诸(通常是主观的)专家判断的情况下确定情景的数量和情景的概率。本文讨论了一种基于模型的方法,并提出使用隐马尔可夫模型来确定相关场景的数量和场景概率。隐马尔可夫模型的工具允许使用已建立的模型选择标准,如赤池信息标准,来决定场景的数量。隐马尔可夫模型还提供了隐状态转移矩阵的估计,这构成了所需的条件情景概率。通过使用标准中的默认值时间序列来讨论隐马尔可夫模型的工具。贫穷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Institutional Investors on Real Estate Risk Delta-Gamma Component VaR: Non-Linear Risk Decomposition for any Type of Funds Testing Factor Models in the Cross-Section Quantum Circuit Learning to Compute Option Prices and Their Sensitivities Put Option and Risk Level of Asset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1