Eficiencia de una red neuronal para detectar la transición de fase en sistemas 2D con percolación

Gustavo Medina Ángel, Gennadiy Burlak
{"title":"Eficiencia de una red neuronal para detectar la transición de fase en sistemas 2D con percolación","authors":"Gustavo Medina Ángel, Gennadiy Burlak","doi":"10.30973/progmat/2022.14.3/1","DOIUrl":null,"url":null,"abstract":"Construimos una red neuronal (RN) que simula el efecto de percolación para el caso de sistemas 2D utilizando una red neuronal supervisada. Creamos una base de datos (DB) donde asignamos los valores de los poros con radio aleatorio que componen el sistema bidimensional para entrenar nuestra red, una vez entrenada, la RN fue capaz de detectar si había o no una transición de fase en sistemas 2D con las que se probó nuestra red. Realizamos varias pruebas introduciendo ruido en los radios de los poros en los sistemas de prueba y obtuvimos buenos resultados de predicción cuando el ruido era pequeño, mientras que para ruidos superiores a 0.3 la precisión de predicción tendía a disminuir.","PeriodicalId":417893,"journal":{"name":"Programación Matemática y Software","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programación Matemática y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30973/progmat/2022.14.3/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Construimos una red neuronal (RN) que simula el efecto de percolación para el caso de sistemas 2D utilizando una red neuronal supervisada. Creamos una base de datos (DB) donde asignamos los valores de los poros con radio aleatorio que componen el sistema bidimensional para entrenar nuestra red, una vez entrenada, la RN fue capaz de detectar si había o no una transición de fase en sistemas 2D con las que se probó nuestra red. Realizamos varias pruebas introduciendo ruido en los radios de los poros en los sistemas de prueba y obtuvimos buenos resultados de predicción cuando el ruido era pequeño, mientras que para ruidos superiores a 0.3 la precisión de predicción tendía a disminuir.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络检测二维渗流系统相变的效率
我们建立了一个神经网络(RN),利用监督神经网络模拟二维系统的渗流效应。创建了一个数据库(DB)拨出孔洞和收音机随机值组成二维来训练我们的网络系统,一旦训练,RN能够检测是否有一个过渡阶段的2D与系统试我们的网络。我们通过在测试系统中引入孔隙半径噪声进行了几次测试,当噪声较小时,我们获得了良好的预测结果,而对于大于0.3的噪声,预测精度往往会降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sistema de Información Gerencial para la detección del alumno en situación extraordinaria Antena Rectangular con Ranuras y Muescas para Aplicaciones Biomédicas Software para ayudar en la interpretación de gammagrafías óseas Optimización de Encuestas Electorales mediante Redes Neuronales Artificiales Optimizando el aprendizaje de matemáticas en el primer grado: el impacto del Metaverso de Roblox en el desarrollo de competencias numéricas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1