A Comparison of Face Detection Classifier using Facial Geometry Distance Measure

Nurbaity Sabri, Joveni Henry, Z. Ibrahim, Nurulhuda Ghazali, N. N. Abu Mangshor, Nur Farahin Mohd Johari, Shafaf Ibrahim
{"title":"A Comparison of Face Detection Classifier using Facial Geometry Distance Measure","authors":"Nurbaity Sabri, Joveni Henry, Z. Ibrahim, Nurulhuda Ghazali, N. N. Abu Mangshor, Nur Farahin Mohd Johari, Shafaf Ibrahim","doi":"10.1109/ICSGRC.2018.8657592","DOIUrl":null,"url":null,"abstract":"Due to the increasing crime rate in Malaysia, the safety and security need to be robust from the intruders. Numerous biometric-based technologies are offered but they are not friendly and less accurate. Among the available biometric technology, face recognition is the friendliest among all the technology. Hence, the aim of this research is to identify the best classifier for face recognition using facial geometry distance measure. A comparison between Support Vector Machine (SVM), Multi Linear Perceptron (MLP) and Naïve Bayes classifiers is conducted in classifying human face using facial geometry distance measures features. Experimental result shows Naïve Bayes obtained the high accuracy with 93.16% with less build time compared to MLP and SVM classifier. For future work, more person face images will be added into database for face recognition using the highest classifier achieves in this research.","PeriodicalId":147027,"journal":{"name":"2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGRC.2018.8657592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Due to the increasing crime rate in Malaysia, the safety and security need to be robust from the intruders. Numerous biometric-based technologies are offered but they are not friendly and less accurate. Among the available biometric technology, face recognition is the friendliest among all the technology. Hence, the aim of this research is to identify the best classifier for face recognition using facial geometry distance measure. A comparison between Support Vector Machine (SVM), Multi Linear Perceptron (MLP) and Naïve Bayes classifiers is conducted in classifying human face using facial geometry distance measures features. Experimental result shows Naïve Bayes obtained the high accuracy with 93.16% with less build time compared to MLP and SVM classifier. For future work, more person face images will be added into database for face recognition using the highest classifier achieves in this research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于几何距离度量的人脸检测分类器比较
由于马来西亚的犯罪率不断上升,安全和安保需要强大的入侵者。有许多基于生物特征的技术可供选择,但它们并不友好,也不太准确。在现有的生物识别技术中,人脸识别是最友好的技术。因此,本研究的目的是利用人脸几何距离度量来确定最佳的人脸识别分类器。比较了支持向量机(SVM)、多线性感知器(MLP)和Naïve贝叶斯分类器利用人脸几何距离测度特征进行人脸分类的效果。实验结果表明Naïve与MLP和SVM分类器相比,Bayes的准确率高达93.16%,且构建时间更短。在未来的工作中,我们将使用本研究中达到的最高分类器,将更多的人脸图像添加到数据库中进行人脸识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Store-and-Delivery Approach for Air-Ground Collaborative Wireless Sensor Network Statistical Analysis of Agarwood Oil Compounds based on GC-MS Data Radial Basis Function (RBF) tuned Kernel Parameter of Agarwood Oil Compound for Quality Classification using Support Vector Machine (SVM) Improved Grey Wolf Optimization Algorithm for Overcurrent Relays Coordination Optimal Direct Yaw Control for Sport Utility Vehicle Using PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1