Advanced Discrete Generalized-Neurodynamic Model Applied to Solve Discrete Time-Variant Augmented Sylvester Equation with Perturbation Suppression

Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis
{"title":"Advanced Discrete Generalized-Neurodynamic Model Applied to Solve Discrete Time-Variant Augmented Sylvester Equation with Perturbation Suppression","authors":"Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis","doi":"10.1109/ICICIP53388.2021.9642177","DOIUrl":null,"url":null,"abstract":"In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用先进的离散广义神经动力学模型求解具有扰动抑制的离散时变增广Sylvester方程
本文提出了一种先进的离散广义神经动力学(A-DGND)模型来求解具有扰动抑制的离散时变增广Sylvester方程(ddv - asme)。首先,我们提出了离散时变增广Sylvester矩阵方程,它可以转化为一个简单的矩阵-向量问题。其次,在连续时间环境下,针对连续时变增广Sylvester矩阵方程(CTV-ASME),得到了一种先进的连续广义神经动力学(A-CGND)模型。然后,在四步离散化公式的基础上,通过离散化A-CGND模型,提出了具有摄动抑制的ddv - asme的A-DGND模型。最后,根据数值实验结果,验证了A-DGND模型求解DTVASME的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1