Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis
{"title":"Advanced Discrete Generalized-Neurodynamic Model Applied to Solve Discrete Time-Variant Augmented Sylvester Equation with Perturbation Suppression","authors":"Yang Shi, Guoqian Liu, Jie Wang, Jiazheng Zhang, Jian Li, Dimitrios Gerontitis","doi":"10.1109/ICICIP53388.2021.9642177","DOIUrl":null,"url":null,"abstract":"In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an advanced discrete generalized-neurodynamic (A-DGND) model is proposed to solve discrete time-variant augmented Sylvester equation (DTV-ASME) with perturbation suppression. Firstly, we present the discrete time-variant augmented Sylvester matrix equation that can be transformed into a simple matrix-vector problem. Secondly, in the continuous-time environment, for solving the continuous time-variant augmented Sylvester matrix equation (CTV-ASME), an advanced continuous generalized-neurodynamic (A-CGND) model is obtained. Then, based on the four-step discretization formula, an A-DGND model is proposed by discretizing the A-CGND model for solving DTV-ASME with perturbation suppression. Finally, according to the numerical experiment results, the effectiveness and robustness of A-DGND model for solving DTVASME are verified.