Variational Weakly Supervised Gaussian Processes

M. Kandemir, Manuel Haussmann, Ferran Diego, K. Rajamani, J. Laak, F. Hamprecht
{"title":"Variational Weakly Supervised Gaussian Processes","authors":"M. Kandemir, Manuel Haussmann, Ferran Diego, K. Rajamani, J. Laak, F. Hamprecht","doi":"10.5244/C.30.71","DOIUrl":null,"url":null,"abstract":"We introduce the first model to perform weakly supervised learning with Gaussian processes on up to millions of instances. The key ingredient to achieve this scalability is to replace the standard assumption of MIL that the bag-level prediction is the maximum of instance-level estimates with the accumulated evidence of instances within a bag. This enables us to devise a novel variational inference scheme that operates solely by closedform updates. Keeping all its parameters but one fixed, our model updates the remaining parameter to the global optimum. This virtue leads to charmingly fast convergence, fitting perfectly to large-scale learning setups. Our model performs significantly better in two medical applications than adaptation of GPMIL to scalable inference and various scalable MIL algorithms. It also proves to be very competitive in object classification against state-of-the-art adaptations of deep learning to weakly supervised learning.","PeriodicalId":125761,"journal":{"name":"Procedings of the British Machine Vision Conference 2016","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedings of the British Machine Vision Conference 2016","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5244/C.30.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We introduce the first model to perform weakly supervised learning with Gaussian processes on up to millions of instances. The key ingredient to achieve this scalability is to replace the standard assumption of MIL that the bag-level prediction is the maximum of instance-level estimates with the accumulated evidence of instances within a bag. This enables us to devise a novel variational inference scheme that operates solely by closedform updates. Keeping all its parameters but one fixed, our model updates the remaining parameter to the global optimum. This virtue leads to charmingly fast convergence, fitting perfectly to large-scale learning setups. Our model performs significantly better in two medical applications than adaptation of GPMIL to scalable inference and various scalable MIL algorithms. It also proves to be very competitive in object classification against state-of-the-art adaptations of deep learning to weakly supervised learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变分弱监督高斯过程
我们引入了第一个在多达数百万个实例上使用高斯过程执行弱监督学习的模型。实现这种可伸缩性的关键因素是将MIL的标准假设(即包级预测是实例级估计的最大值)替换为包内实例的累积证据。这使我们能够设计一种新的变分推理方案,该方案仅通过封闭形式的更新来操作。模型保持所有参数不变,只保留一个参数不变,将剩余参数更新为全局最优。这种优点导致了迷人的快速收敛,完全适合大规模的学习设置。我们的模型在两种医疗应用中表现明显优于GPMIL对可扩展推理和各种可扩展MIL算法的适应。它也被证明在对象分类方面与深度学习对弱监督学习的最新适应非常有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Next-Best Stereo: Extending Next-Best View Optimisation For Collaborative Sensors Learning Neural Network Architectures using Backpropagation Localizing Periodicity in Time Series and Videos Attention Networks for Weakly Supervised Object Localization Variational Weakly Supervised Gaussian Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1