A 500-MS/s 8.4-ps Double-Edge Successive Approximation TDC in 65 nm CMOS

Rashed Siddiqui, F. Yuan, Yushi Zhou
{"title":"A 500-MS/s 8.4-ps Double-Edge Successive Approximation TDC in 65 nm CMOS","authors":"Rashed Siddiqui, F. Yuan, Yushi Zhou","doi":"10.1109/MWSCAS.2019.8885394","DOIUrl":null,"url":null,"abstract":"This paper presents an 8.4 ps 500 MS/s 4-bit successive approximation register time-to-digital converter (SAR-TDC). The TDC utilizes both the rising and falling edges of the cyclic signals defining the time input to perform time-to-digital conversion thereafter to low both the frequency of the cyclic signals and the power consumption of the system generating these signals by 50%. Pre-skewing is utilized to improve the resolution of the digital-to-time converter (DTC) subsequently the resolution of the TDC. Both the design and performance of the double-edge SAR TDC are compared with those of a corresponding single-edge SAR TDC. The TDCs was designed in a TSMC 65 nm CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM4 device models. Simulation results show at 500 MS/s, the TDC achieves a SFDR of 37.6, a SNDR of 25.5 dB, a resolution of 8.4 ps while consuming 0.86 mV.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an 8.4 ps 500 MS/s 4-bit successive approximation register time-to-digital converter (SAR-TDC). The TDC utilizes both the rising and falling edges of the cyclic signals defining the time input to perform time-to-digital conversion thereafter to low both the frequency of the cyclic signals and the power consumption of the system generating these signals by 50%. Pre-skewing is utilized to improve the resolution of the digital-to-time converter (DTC) subsequently the resolution of the TDC. Both the design and performance of the double-edge SAR TDC are compared with those of a corresponding single-edge SAR TDC. The TDCs was designed in a TSMC 65 nm CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM4 device models. Simulation results show at 500 MS/s, the TDC achieves a SFDR of 37.6, a SNDR of 25.5 dB, a resolution of 8.4 ps while consuming 0.86 mV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于65nm CMOS的500 ms /s 8.4 ps双边缘连续逼近TDC
提出了一种8.4 ps 500 MS/s的4位逐次逼近寄存器时间-数字转换器(SAR-TDC)。TDC利用循环信号的上升沿和下降沿来定义时间输入,然后执行时间到数字的转换,从而将循环信号的频率和产生这些信号的系统的功耗降低50%。利用预倾斜来提高数字时间转换器(DTC)的分辨率,进而提高TDC的分辨率。比较了双边缘SAR TDC与相应的单边缘SAR TDC的设计和性能。tdc采用台积电65nm CMOS技术设计,并使用Cadence Design Systems的Spectre对BSIM4器件模型进行分析。仿真结果表明,在500 MS/s时,TDC的SFDR为37.6,SNDR为25.5 dB,分辨率为8.4 ps,功耗为0.86 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures Design Techniques for Zero Steady-State Output Ripple in Digital Low Dropout Regulators Spectrum-Efficient Communication Over Copper Using Hybrid Amplitude and Spatial Signaling AI, IoT hardware and Algorithmic Considerations for Hearing aid and Extreme Edge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1