Efficient Sequential Pattern Mining Algorithm by Positional Data

Shan Jin, Hui Yingxin, Jia Lianjuan
{"title":"Efficient Sequential Pattern Mining Algorithm by Positional Data","authors":"Shan Jin, Hui Yingxin, Jia Lianjuan","doi":"10.1109/ICICIS.2011.109","DOIUrl":null,"url":null,"abstract":"The CloSpan algorithm first suggested that the closed set of sequential patterns is more compact and has the same expressive power with respect to the full set. Based on the Prefix Span algorithm, CloSpan added two pruning techniques, backward sub-pattern and backward super-pattern, to efficiently mine the closed set. This paper proposed a new closed sequential pattern mining algorithm. However, instead of depth-first searching used in many previous methods, we adopt a breadth-first approach. Besides, previous methods seldom utilize the property of item ordering to enhance efficiency. We used a list of positional data to reserve the information of item ordering. By using these positional data, we developed two main pruning techniques, backward super pattern condition and same positional data condition. To ensure correct and compact resulted lattice, we also manipulated some special conditions. From the experimental results, our algorithm outperforms CloSpan in the cases of moderately large datasets and low support threshold.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The CloSpan algorithm first suggested that the closed set of sequential patterns is more compact and has the same expressive power with respect to the full set. Based on the Prefix Span algorithm, CloSpan added two pruning techniques, backward sub-pattern and backward super-pattern, to efficiently mine the closed set. This paper proposed a new closed sequential pattern mining algorithm. However, instead of depth-first searching used in many previous methods, we adopt a breadth-first approach. Besides, previous methods seldom utilize the property of item ordering to enhance efficiency. We used a list of positional data to reserve the information of item ordering. By using these positional data, we developed two main pruning techniques, backward super pattern condition and same positional data condition. To ensure correct and compact resulted lattice, we also manipulated some special conditions. From the experimental results, our algorithm outperforms CloSpan in the cases of moderately large datasets and low support threshold.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位置数据的高效序列模式挖掘算法
CloSpan算法首先提出了序列模式的封闭集更紧凑,并且相对于完整集具有相同的表达能力。CloSpan在Prefix Span算法的基础上,增加了反向子模式和反向超模式两种剪枝技术,有效地挖掘了封闭集。提出了一种新的封闭序列模式挖掘算法。然而,我们采用了宽度优先的方法,而不是以前许多方法中使用的深度优先搜索。此外,以往的方法很少利用项目排序的特性来提高效率。我们使用位置数据列表来保留项目排序信息。利用这些位置数据,我们开发了两种主要的剪枝技术:后向超模式条件和相同位置数据条件。为了保证结果格的正确性和紧凑性,我们还处理了一些特殊的条件。从实验结果来看,在中等规模的数据集和低支持度阈值的情况下,我们的算法优于CloSpan。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Telephone Clients Management System with Short Messages The Analysis on the Function of Risk Management in Construction Enterprises Development Test Case Prioritization Technique Based on Genetic Algorithm A Model to Create Graeco Latin Square Using Genetic Algorithm Perceptual System of the Dangerous Goods in Transit Escort Based on WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1