The Kodiag System Case-based Diagnosis With Kohonen Networks

J. Rahmel, A. von Wangenheim
{"title":"The Kodiag System Case-based Diagnosis With Kohonen Networks","authors":"J. Rahmel, A. von Wangenheim","doi":"10.1109/NNAT.1993.586057","DOIUrl":null,"url":null,"abstract":"This paper describes the case-based KoDiag system, a diagnostic tool based on the Kohonen model of artificial neural networks (ANN), extended by modifications to increase storage capacity and processing speed during learning. A new training method is introduced, that leads to clustering in the Kohonen map according to the feature context and improves performance during the diagnosis process when input data is partially not available. Unlike common ANN-approaches to diagnosis, KoDiag contains both a classification and a test selection component. The classi3cation results of KoDiag are compared to a CBR-expert system.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the case-based KoDiag system, a diagnostic tool based on the Kohonen model of artificial neural networks (ANN), extended by modifications to increase storage capacity and processing speed during learning. A new training method is introduced, that leads to clustering in the Kohonen map according to the feature context and improves performance during the diagnosis process when input data is partially not available. Unlike common ANN-approaches to diagnosis, KoDiag contains both a classification and a test selection component. The classi3cation results of KoDiag are compared to a CBR-expert system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kohonen网络的Kodiag系统病例诊断
本文介绍了基于案例的KoDiag系统,这是一种基于人工神经网络(ANN)的Kohonen模型的诊断工具,通过修改进行扩展以提高学习过程中的存储容量和处理速度。引入了一种新的训练方法,根据特征上下文在Kohonen图中进行聚类,提高了在部分输入数据不可用时的诊断性能。与常见的人工神经网络诊断方法不同,KoDiag包含分类和测试选择组件。将KoDiag的分类结果与cbr -专家系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators Improved Image Compression Using Backpropagation Networks A Neural Network Quality Classifier For Tig Welding Without Filler Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators Prototype Of A Neuro-fuzzy Controlled Model Lorry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1