Iot Enabled Fog Based Computing with Deep Learning Models to Increase The Allocation of Resource

B. Laxmaiah, Balamurugan Easwaran, H. P. Sultana, D. Praveenadevi, Likitha Sai Katragadda
{"title":"Iot Enabled Fog Based Computing with Deep Learning Models to Increase The Allocation of Resource","authors":"B. Laxmaiah, Balamurugan Easwaran, H. P. Sultana, D. Praveenadevi, Likitha Sai Katragadda","doi":"10.1109/ICDT57929.2023.10151115","DOIUrl":null,"url":null,"abstract":"The existing resource allocation mechanism in fog computing environment fails to allocate optimal resources in the network environment. Since, these mechanism fails to allocate increasing user data from the internet of things devices. It is hence necessary to model a system that enables processing of task based on the resource available. The paper explains an internet of things based fog computing for allocation of resources using deep learning computations. The deep learning model is trained, tested and validated in an efficient manner to allocate the task in fog environment when user IoT data is sent for storage and processing. The experimental validation shows increased network throughput and reduced losses while a task is allocated in the user computing environment.","PeriodicalId":266681,"journal":{"name":"2023 International Conference on Disruptive Technologies (ICDT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Disruptive Technologies (ICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT57929.2023.10151115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existing resource allocation mechanism in fog computing environment fails to allocate optimal resources in the network environment. Since, these mechanism fails to allocate increasing user data from the internet of things devices. It is hence necessary to model a system that enables processing of task based on the resource available. The paper explains an internet of things based fog computing for allocation of resources using deep learning computations. The deep learning model is trained, tested and validated in an efficient manner to allocate the task in fog environment when user IoT data is sent for storage and processing. The experimental validation shows increased network throughput and reduced losses while a task is allocated in the user computing environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网启用基于雾的计算与深度学习模型,以增加资源分配
雾计算环境下现有的资源分配机制无法在网络环境下实现资源的最优分配。因为,这些机制无法分配来自物联网设备的日益增长的用户数据。因此,有必要对一个系统进行建模,使其能够基于可用资源处理任务。本文解释了一种基于物联网的雾计算,用于使用深度学习计算分配资源。深度学习模型以有效的方式进行训练、测试和验证,以便在用户物联网数据发送存储和处理时在雾环境中分配任务。实验验证表明,在用户计算环境中分配任务可以提高网络吞吐量,减少损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Best Ways Using AI in Impacting Success on MBA Graduates A Mechanism Used to Predict Diet Consumption and Stress Management in Humans Using IoMT ICDT 2023 Cover Page Machine Learning-Based Approach for Hand Gesture Recognition A Smart Innovation of Business Intelligence Based Analytical Model by Using POS Based Deep Learning Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1