{"title":"Cross-Domain Gesture Recognition via Learning Spatiotemporal Features in Wi-Fi Sensing","authors":"Ronghui Zhang, Jiaen Zhou, Sheng Wu, Xiaojun Jing","doi":"10.1109/ICCCWorkshops52231.2021.9538900","DOIUrl":null,"url":null,"abstract":"Gesture recognition has enabled IoT applications such as human-computer interaction and virtual reality. In this work, we propose a cross-domain device-free gesture recognition (DFGR) model, that exploits 3D-CNN to obtain spatiotemporal features in Wi-Fi sensing. To adapt the sensing data to the 3D model, we carry out 3D data segment and supplement in addition to signal denoising and time-frequency transformation. We demonstrate that our proposed model outperforms the state-of-the-art method in the application of DFGR even cross 3 domain factors simultaneously, and is easy to converge and convenient for training with a less complicated hierarchical structure.","PeriodicalId":335240,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops52231.2021.9538900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Gesture recognition has enabled IoT applications such as human-computer interaction and virtual reality. In this work, we propose a cross-domain device-free gesture recognition (DFGR) model, that exploits 3D-CNN to obtain spatiotemporal features in Wi-Fi sensing. To adapt the sensing data to the 3D model, we carry out 3D data segment and supplement in addition to signal denoising and time-frequency transformation. We demonstrate that our proposed model outperforms the state-of-the-art method in the application of DFGR even cross 3 domain factors simultaneously, and is easy to converge and convenient for training with a less complicated hierarchical structure.