Model Structures and Fitting Criteria for System Identification with Neural Networks

Marco Forgione, D. Piga
{"title":"Model Structures and Fitting Criteria for System Identification with Neural Networks","authors":"Marco Forgione, D. Piga","doi":"10.1109/AICT50176.2020.9368834","DOIUrl":null,"url":null,"abstract":"This paper focuses on the identification of dynamical systems with tailor-made model structures, where neural networks are used to approximate uncertain components and domain knowledge is retained, if available. These model structures are fitted to measured data using different criteria including a computationally efficient approach minimizing a regularized multi-step ahead simulation error. The neural net-work parameters are estimated along with the initial conditions used to simulate the output signal in small-size subsequences. A regularization term is included in the fitting cost in order to enforce these initial conditions to be consistent with the estimated system dynamics.","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper focuses on the identification of dynamical systems with tailor-made model structures, where neural networks are used to approximate uncertain components and domain knowledge is retained, if available. These model structures are fitted to measured data using different criteria including a computationally efficient approach minimizing a regularized multi-step ahead simulation error. The neural net-work parameters are estimated along with the initial conditions used to simulate the output signal in small-size subsequences. A regularization term is included in the fitting cost in order to enforce these initial conditions to be consistent with the estimated system dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络系统辨识的模型结构与拟合准则
本文的重点是识别具有定制模型结构的动力系统,其中使用神经网络来近似不确定组件,并保留领域知识(如果可用)。这些模型结构使用不同的标准来拟合测量数据,包括计算效率的方法,最小化正则化多步超前模拟误差。估计神经网络参数和初始条件,用于模拟小尺寸子序列的输出信号。为了使这些初始条件与估计的系统动力学一致,在拟合成本中包含了一个正则化项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain-based open infrastructure for URL filtering in an Internet browser 2D Amplitude-Only Microwave Tomography Algorithm for Breast-Cancer Detection Information Extraction from Arabic Law Documents An Experimental Design Approach to Analyse the Performance of Island-Based Parallel Artificial Bee Colony Algorithm Automation Check Vulnerabilities Of Access Points Based On 802.11 Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1