Generation of rejection method bounds for spherically invariant random vectors

A. D. Keckler, D. Weiner
{"title":"Generation of rejection method bounds for spherically invariant random vectors","authors":"A. D. Keckler, D. Weiner","doi":"10.1109/NRC.2002.999690","DOIUrl":null,"url":null,"abstract":"Based upon the central limit theorem, random clutter returns are commonly modeled as Gaussian. Nevertheless, many situations arise in practice where the data are clearly non-Gaussian, as is seen with \"spiky\" radar clutter. Spherically invariant random vectors (SIRVs) are especially attractive for modeling correlated non-Gaussian clutter. This paper discusses the computer simulation of SIRVs for Monte Carlo purposes using the rejection method. A key requirement of the rejection method is the ability to find a tight bound of the probability density function, from which random samples can be readily generated. An automated technique for generating this bound for the SIRV probability density function is presented.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Based upon the central limit theorem, random clutter returns are commonly modeled as Gaussian. Nevertheless, many situations arise in practice where the data are clearly non-Gaussian, as is seen with "spiky" radar clutter. Spherically invariant random vectors (SIRVs) are especially attractive for modeling correlated non-Gaussian clutter. This paper discusses the computer simulation of SIRVs for Monte Carlo purposes using the rejection method. A key requirement of the rejection method is the ability to find a tight bound of the probability density function, from which random samples can be readily generated. An automated technique for generating this bound for the SIRV probability density function is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球不变随机向量抑制方法界的生成
基于中心极限定理,随机杂波返回通常被建模为高斯。然而,在实践中出现了许多情况,其中数据明显是非高斯的,正如“尖”雷达杂波所看到的那样。球不变随机向量(sirv)对于相关非高斯杂波的建模特别有吸引力。本文讨论了基于蒙特卡罗方法的siv的计算机模拟。拒绝方法的一个关键要求是能够找到概率密度函数的紧密边界,从中可以很容易地生成随机样本。提出了一种自动生成SIRV概率密度函数界的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acceleration compensation by matched filtering Model-based adaptive detection and DOA estimation using separated sub-arrays Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration A new constrained joint-domain localized approach for airborne radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1