Efficiency-Optimization Control of Extended Range Electric Vehicle Using Online Sequential Extreme Learning Machine

Bumin Meng, Yaonan Wang, Yimin Yang
{"title":"Efficiency-Optimization Control of Extended Range Electric Vehicle Using Online Sequential Extreme Learning Machine","authors":"Bumin Meng, Yaonan Wang, Yimin Yang","doi":"10.1109/VPPC.2013.6671680","DOIUrl":null,"url":null,"abstract":"This paper describes the application of an Online Sequential Extreme Learning Machine(OS_ELM) for online efficiency-optimization control of Extended Range Electric Vehicle (EREV also called REEV). Efficiency-optimization control of EREV is formulated as a nonlinear constrained multi-objective problem with competing and non-commensurable objectives of fuel consumption, emissions, driving performance, battery life and driving range. To get real-time Pareto optimal solutions, an Offline Extreme Learning Machine and OS_ELM are hanged together. ELM is used to describe nonlinear system of EREV. When work status of gasoline engine or load change, optimum work status can be sought out by OS_ELM. Finally, the optimization is performed over the following three typical driving cycles that are currently used in the U.S. and European communities: 1) the Federal Test Procedure (FTP); 2) Extra Urban Driving Cycle (EUDC); and 3) Urban Dynamometer Driving Schedule (UDDS). The results demonstrate the capability of the proposed approach to generate well optimal solutions of the on-board charger optimization of EREV.","PeriodicalId":119598,"journal":{"name":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2013.6671680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper describes the application of an Online Sequential Extreme Learning Machine(OS_ELM) for online efficiency-optimization control of Extended Range Electric Vehicle (EREV also called REEV). Efficiency-optimization control of EREV is formulated as a nonlinear constrained multi-objective problem with competing and non-commensurable objectives of fuel consumption, emissions, driving performance, battery life and driving range. To get real-time Pareto optimal solutions, an Offline Extreme Learning Machine and OS_ELM are hanged together. ELM is used to describe nonlinear system of EREV. When work status of gasoline engine or load change, optimum work status can be sought out by OS_ELM. Finally, the optimization is performed over the following three typical driving cycles that are currently used in the U.S. and European communities: 1) the Federal Test Procedure (FTP); 2) Extra Urban Driving Cycle (EUDC); and 3) Urban Dynamometer Driving Schedule (UDDS). The results demonstrate the capability of the proposed approach to generate well optimal solutions of the on-board charger optimization of EREV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线序列极限学习机的增程式电动汽车效率优化控制
本文介绍了在线顺序极限学习机(OS_ELM)在增程式电动汽车(EREV)在线效率优化控制中的应用。将电动汽车的效率优化控制表述为油耗、排放、行驶性能、电池寿命和续驶里程等目标相互竞争且不可通约的非线性约束多目标问题。为了得到实时的Pareto最优解,将Offline Extreme Learning Machine和OS_ELM挂在一起。用极限向量机描述了非线性电涡流控制系统。当汽油机的工作状态或负载发生变化时,可以通过OS_ELM找到最优的工作状态。最后,在美国和欧洲目前使用的三个典型驾驶循环中进行优化:1)联邦测试程序(FTP);2)城市外行驶周期(EUDC);3)城市测功机驾驶时间表(UDDS)。结果表明,该方法能够很好地求解车载充电器优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Characteristics Improvement of Power Battery Module for Electric Vehicles Battery State Estimation Using Mixed Kalman/Hinfinity, Adaptive Luenberger and Sliding Mode Observer A Comparison Study of the Model Based SOC Estimation Methods for Lithium-Ion Batteries Modeling for Control and Optimal Design of a Power Steering Pump and an Air Conditioning Compressor Used in Heavy Duty Trucks Verification of the Shifting Mechanism of Clutchless Geared Smart Transmission Using the Compact Car Size Test Bench
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1