Cross Density Kernel for Nonstationary Signal Processing

Bo Hu, J. Príncipe
{"title":"Cross Density Kernel for Nonstationary Signal Processing","authors":"Bo Hu, J. Príncipe","doi":"10.1109/SSP53291.2023.10208056","DOIUrl":null,"url":null,"abstract":"This paper introduces the cross density kernel function (CDKF), a new positive-definite kernel that quantifies the statistical dependence between random processes, to address the challenge of applying time series prediction and modeling techniques to nonstationary signals. The paper highlights the limited applicability of the Wiener filter and Parzen’s autocorrelation reproducing kernel Hilbert spaces (RKHS) to stationary signals. CDKF extends these methods by capturing properties of probability density functions for random processes in the Hilbert space with a novel bidirectional recursion, and using two neural networks to optimize the kernel function based on realizations. The paper concludes by presenting experimental results that support the effectiveness of CDKF.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the cross density kernel function (CDKF), a new positive-definite kernel that quantifies the statistical dependence between random processes, to address the challenge of applying time series prediction and modeling techniques to nonstationary signals. The paper highlights the limited applicability of the Wiener filter and Parzen’s autocorrelation reproducing kernel Hilbert spaces (RKHS) to stationary signals. CDKF extends these methods by capturing properties of probability density functions for random processes in the Hilbert space with a novel bidirectional recursion, and using two neural networks to optimize the kernel function based on realizations. The paper concludes by presenting experimental results that support the effectiveness of CDKF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平稳信号处理的交叉密度核
为了解决将时间序列预测和建模技术应用于非平稳信号的挑战,本文引入了交叉密度核函数(CDKF),这是一种量化随机过程之间统计相关性的新型正定核函数。本文强调了维纳滤波器和Parzen自相关再现核希尔伯特空间(RKHS)对平稳信号的有限适用性。CDKF扩展了这些方法,通过一种新的双向递归捕获Hilbert空间中随机过程的概率密度函数的性质,并使用两个神经网络来优化基于实现的核函数。本文最后给出了支持CDKF有效性的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1