Bad data detection and handling in distribution grid state estimation using artificial neural networks

M. Cramer, Philipp Goergens, A. Schnettler
{"title":"Bad data detection and handling in distribution grid state estimation using artificial neural networks","authors":"M. Cramer, Philipp Goergens, A. Schnettler","doi":"10.1109/PTC.2015.7232655","DOIUrl":null,"url":null,"abstract":"This research project addresses the problem of erroneous measurements for distribution grid state estimation (DGSE) by using bad data detection. A method based on artificial neural networks is developed and tested in combination with DGSE. The necessary steps in order to create the neural networks are presented and training parameters are investigated. The method replaces identified measurement errors with new estimates. The developed method is validated by simulation on the basis of an electric distribution grid. It is shown that the bad data correction method detects and correctly identifies single and multiple erroneous measurement values. Furthermore, the ability of the developed method to handle different types of measurement errors and the impact on the quality of the state estimation result are examined. The method improves the quality of the DGSE result and reduces the state estimation's probability to diverge.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This research project addresses the problem of erroneous measurements for distribution grid state estimation (DGSE) by using bad data detection. A method based on artificial neural networks is developed and tested in combination with DGSE. The necessary steps in order to create the neural networks are presented and training parameters are investigated. The method replaces identified measurement errors with new estimates. The developed method is validated by simulation on the basis of an electric distribution grid. It is shown that the bad data correction method detects and correctly identifies single and multiple erroneous measurement values. Furthermore, the ability of the developed method to handle different types of measurement errors and the impact on the quality of the state estimation result are examined. The method improves the quality of the DGSE result and reduces the state estimation's probability to diverge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络在配电网状态估计中的不良数据检测与处理
本研究利用不良数据检测方法解决配电网状态估计(DGSE)中测量误差问题。开发了一种基于人工神经网络的方法,并结合DGSE进行了测试。给出了建立神经网络的必要步骤,并研究了训练参数。该方法用新的估计代替已识别的测量误差。基于某配电网的仿真验证了该方法的有效性。结果表明,该方法能有效地检测和识别单个和多个错误测量值。此外,还研究了所开发的方法处理不同类型测量误差的能力以及对状态估计结果质量的影响。该方法提高了DGSE结果的质量,降低了状态估计的发散概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage random forest method for short-term load forecasting Real-time control of microgrids with explicit power setpoints: Unintentional islanding Warm-commissioning tool of the data chain of digital measurement systems Integration of renewable energy into grid system - the Sabah Green Grid Modeling the PEV traffic pattern in an urban environment with parking lots and charging stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1