Implementation of a Binary Neural Network on a Passive Array of Magnetic Tunnel Junctions

Jonathan M. Goodwill, N. Prasad, B. Hoskins, M. Daniels, A. Madhavan, L. Wan, T. Santos, M. Tran, J. Katine, P. Braganca, M. Stiles, J. McClelland
{"title":"Implementation of a Binary Neural Network on a Passive Array of Magnetic Tunnel Junctions","authors":"Jonathan M. Goodwill, N. Prasad, B. Hoskins, M. Daniels, A. Madhavan, L. Wan, T. Santos, M. Tran, J. Katine, P. Braganca, M. Stiles, J. McClelland","doi":"10.1109/TMRC56419.2022.9918590","DOIUrl":null,"url":null,"abstract":"Magnetic tunnel junctions (MTJs) provide an attractive platform for implementing neural networks because of their simplicity, non-volatility, and scalability. However, in hardware realizations, device variations, write errors, and parasitic resistance degrade performance. To quantify such effects, we perform inference experiments on a 2-layer perceptron constructed from a 15 x 15 passive array of MTJs, examining classification accuracy and write fidelity. Despite imperfections, we achieve median accuracy of 95.3% with proper tuning of network parameters. The success of this tuning process shows that new metrics are needed to characterize and optimize networks reproduced in mixed signal hardware.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Magnetic tunnel junctions (MTJs) provide an attractive platform for implementing neural networks because of their simplicity, non-volatility, and scalability. However, in hardware realizations, device variations, write errors, and parasitic resistance degrade performance. To quantify such effects, we perform inference experiments on a 2-layer perceptron constructed from a 15 x 15 passive array of MTJs, examining classification accuracy and write fidelity. Despite imperfections, we achieve median accuracy of 95.3% with proper tuning of network parameters. The success of this tuning process shows that new metrics are needed to characterize and optimize networks reproduced in mixed signal hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值神经网络在无源磁隧道结阵列上的实现
磁隧道结(MTJs)因其简单、无波动性和可扩展性而为实现神经网络提供了一个有吸引力的平台。然而,在硬件实现中,器件变化、写错误和寄生电阻会降低性能。为了量化这种影响,我们在一个由15 x 15被动mtj阵列构建的2层感知器上进行了推理实验,检查了分类精度和写入保真度。尽管存在缺陷,但通过适当调整网络参数,我们实现了95.3%的中位数精度。这种调整过程的成功表明,需要新的指标来表征和优化在混合信号硬件中再现的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Spin Hall Angle doped BiSbX Topological Insulators using novel high resistive growth and migration barrier layers TMRC 2022 Program CD Molecular dynamic simulation on the adsorption between D-4OH lubricant and amorphous carbon film for HAMR disk Front Page Magneto-Ionic Control of Spin Textures and Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1