Design factors and their effect on PCB assembly yield - Statistical and neural network predictive models

Y. Li, R.L. Mahajan, J. Tong
{"title":"Design factors and their effect on PCB assembly yield - Statistical and neural network predictive models","authors":"Y. Li, R.L. Mahajan, J. Tong","doi":"10.1109/IEMT.1993.398182","DOIUrl":null,"url":null,"abstract":"The authors relate circuit board design features to assembly yields. Design parameters that may affect the assembly yield are identified using knowledge of the assembly process. These parameters are then quantified for a set of board designs and related to the actual assembly yields by statistical regression models and artificial neural network models. These models are able to predict the assembly yield with a root-mean-square (RMS) error less than 5%. They can be used to predict the assembly yield for new board designs on the same line. Alternatively, they can be used to compare the performance of different lines by comparing the expected yields for a given design with the actual yields.<<ETX>>","PeriodicalId":206206,"journal":{"name":"Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1993.398182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The authors relate circuit board design features to assembly yields. Design parameters that may affect the assembly yield are identified using knowledge of the assembly process. These parameters are then quantified for a set of board designs and related to the actual assembly yields by statistical regression models and artificial neural network models. These models are able to predict the assembly yield with a root-mean-square (RMS) error less than 5%. They can be used to predict the assembly yield for new board designs on the same line. Alternatively, they can be used to compare the performance of different lines by comparing the expected yields for a given design with the actual yields.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计因素及其对PCB成品率的影响——统计和神经网络预测模型
作者将电路板设计特征与组装成品率联系起来。可能影响装配良率的设计参数是利用装配过程的知识确定的。然后将这些参数量化为一组电路板设计,并通过统计回归模型和人工神经网络模型与实际组装产量相关。这些模型能够预测装配成品率,均方根误差小于5%。它们可以用来预测同一生产线上新板设计的装配良率。或者,它们可以通过比较给定设计的预期产率与实际产率来比较不同线路的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flip chip on board (FCOB) process characterization Impact of low-cost MCM-D on MCM designers' technology choices Neural networks in manufacturing: A survey A partitioning advisor for studying the tradeoff between peripheral and area array bonding of components in multichip modules In-line, real-time nondestructive monitoring of Fe contamination for statistical process control (SPC) by surface photovoltage (SPV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1