An Efficient Algorithm for top-k Queries on Uncertain Data Streams

Caiyan Dai, Ling Chen, Yixin Chen, Keming Tang
{"title":"An Efficient Algorithm for top-k Queries on Uncertain Data Streams","authors":"Caiyan Dai, Ling Chen, Yixin Chen, Keming Tang","doi":"10.1109/ICMLA.2012.57","DOIUrl":null,"url":null,"abstract":"We tackle the problem of answering maximum probabilistic top-k tuple set queries. We use a sliding-window model on uncertain data streams and present an efficient algorithm for processing sliding-window queries on uncertain streams. In each sliding window, the algorithm selects the k tuples with the highest probabilities from sets of different numbers of the tuples with the highest scores. Then, the algorithm computes existential probability of the top-k tuples, and chooses the set with the highest probability as the top-k query result. We theoretically prove the correctness of the algorithm. Our experimental results show that our algorithm requires lower time and space complexity than other existing algorithms.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We tackle the problem of answering maximum probabilistic top-k tuple set queries. We use a sliding-window model on uncertain data streams and present an efficient algorithm for processing sliding-window queries on uncertain streams. In each sliding window, the algorithm selects the k tuples with the highest probabilities from sets of different numbers of the tuples with the highest scores. Then, the algorithm computes existential probability of the top-k tuples, and chooses the set with the highest probability as the top-k query result. We theoretically prove the correctness of the algorithm. Our experimental results show that our algorithm requires lower time and space complexity than other existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定数据流上top-k查询的一种高效算法
我们解决了回答最大概率top-k元组集查询的问题。在不确定数据流上使用滑动窗口模型,提出了一种处理不确定数据流上滑动窗口查询的有效算法。在每个滑动窗口中,算法从得分最高的不同数量的元组中选择概率最高的k个元组。然后,算法计算top-k元组的存在概率,选择概率最高的集合作为top-k查询结果。从理论上证明了算法的正确性。实验结果表明,该算法所需的时间和空间复杂度较现有算法低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1