Experimental Studies on the Thermal-Hydraulics of Dowtherm A Through the Pebble Bed With Internal Heat Generation

Limin Liu, Dalin Zhang, Linfeng Li, Yichen Yang, Chenglong Wang, S. Qiu
{"title":"Experimental Studies on the Thermal-Hydraulics of Dowtherm A Through the Pebble Bed With Internal Heat Generation","authors":"Limin Liu, Dalin Zhang, Linfeng Li, Yichen Yang, Chenglong Wang, S. Qiu","doi":"10.1115/ICONE26-81917","DOIUrl":null,"url":null,"abstract":"The Fluoride-salt-cooled High temperature Reactors (FHRs) are an advanced concept using a novel combination of high-temperature coated-particle fuel, low-pressure fluoride-salt coolant and air-Brayton power conversion system. Prismatic fuel or pebble fuel are adopted for the conceptual core designs of FHRs like TMSR-SF, MK1 PB-FHR and SM-AHTR. The high-Prandtl-number FLiBe is mainly adopted as the primary coolant, which specifies in high melting and boiling point and high volumetric capacity. The experimental results obtained from the air, water or inert gas prove reliable for the Prandtl number vary from 0.7 to 7. Little experimental research has been conducted to prove applicability of the above results to the high-Prandtl fluid, fluoride salts in the packed pebble bed. In this paper, a pebble bed experimental facility has been designed and constructed for the FHRs to explore the thermal-hydraulic characteristics of fluoride salts in the reactor pebble bed core. Dowtherm A is adopted as a simulant fluid for the fluoride salts. The cylindrical test section is packed with steel pebbles. The electromagnetic induction heating system is used to provide internal heat source for the pebble beds. The forced flow and convective heat transfer of high-Prandtl-number fluid in the pebble bed with internal heat generation are investigated in the experiment. The fluid inlet temperature and mass flow rate are studied on the thermal-hydraulic characteristics.","PeriodicalId":354697,"journal":{"name":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Advanced Reactors and Fusion Technologies; Codes, Standards, Licensing, and Regulatory Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fluoride-salt-cooled High temperature Reactors (FHRs) are an advanced concept using a novel combination of high-temperature coated-particle fuel, low-pressure fluoride-salt coolant and air-Brayton power conversion system. Prismatic fuel or pebble fuel are adopted for the conceptual core designs of FHRs like TMSR-SF, MK1 PB-FHR and SM-AHTR. The high-Prandtl-number FLiBe is mainly adopted as the primary coolant, which specifies in high melting and boiling point and high volumetric capacity. The experimental results obtained from the air, water or inert gas prove reliable for the Prandtl number vary from 0.7 to 7. Little experimental research has been conducted to prove applicability of the above results to the high-Prandtl fluid, fluoride salts in the packed pebble bed. In this paper, a pebble bed experimental facility has been designed and constructed for the FHRs to explore the thermal-hydraulic characteristics of fluoride salts in the reactor pebble bed core. Dowtherm A is adopted as a simulant fluid for the fluoride salts. The cylindrical test section is packed with steel pebbles. The electromagnetic induction heating system is used to provide internal heat source for the pebble beds. The forced flow and convective heat transfer of high-Prandtl-number fluid in the pebble bed with internal heat generation are investigated in the experiment. The fluid inlet temperature and mass flow rate are studied on the thermal-hydraulic characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内生热球床降温A热工试验研究
氟盐冷却高温堆是采用高温包覆颗粒燃料、低压氟盐冷却剂和空气-布雷顿动力转换系统的新型组合的先进概念。TMSR-SF、MK1 PB-FHR、SM-AHTR等快堆的概念核心设计采用棱柱状燃料或卵石燃料。主冷剂主要采用高普朗特数FLiBe,具有高熔点、高沸点、高容积的特点。从空气、水或惰性气体中得到的实验结果证明,普朗特数在0.7到7之间变化是可靠的。为证明上述结果适用于充填卵石床中的高普朗特流体氟盐,实验研究很少。本文设计并建造了一个快堆球床实验装置,用于研究堆球床堆芯中氟化物盐的热水力特性。采用Dowtherm A作为氟化物盐的模拟流体。圆柱形试验段用钢卵石填充。采用电磁感应加热系统为卵石床提供内部热源。实验研究了高普朗特数流体在含内热球床中的强迫流动和对流换热。研究了流体入口温度和质量流量对热工特性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the Neutronics of a Molten Salt Fast Reactor Using DYN3D-MG for the Investigation of the Application of Frozen Wall Technology Conceptual Design and Neutronics/Thermal-Hydraulic Coupling Optimization Analyses of Two Typical Helium Cooled Solid Breeder Blanket Modules for CFETR Phase II The Backfit Rule’s Compliance Exception A Framework and Model for Assessing the Design Point Performance, Off-Design Point Performance, Control, Economics and Risks of Brayton Helium Gas Turbine Cycles for Generation IV Nuclear Power Plants AFCEN RCC-F: A New Standard for the Fire Protection Design of New Built Light Water Nuclear Power Plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1