Efficient and Secure Remote Health Management in Cloud in Vehicular Adhoc Network Environment

K. Mohanaprakash, T. Gunasekar
{"title":"Efficient and Secure Remote Health Management in Cloud in Vehicular Adhoc Network Environment","authors":"K. Mohanaprakash, T. Gunasekar","doi":"10.1166/jmihi.2021.3905","DOIUrl":null,"url":null,"abstract":"Vehicle Ad Hoc Networks (VANETs) is a crucial communications framework for transferring messages between any healthcare systems. The dilemma of fixing the safest efficient route is a tedious issue in VANET. Hence the secure and most reliable way will give the appropriate solution for\n the routing issues in the VANET. In this paper, by using the Multi-Objective Bio-inspired Heuristic Cuckoo Search Node optimization algorithm is designed to find the efficient safest route for transferring health data within a short period. After seeing the efficient route, the node can be\n distinguished upon the traffic and security by using the Stochastic Discriminant Random Forest Node Classifier. Then in the selected route, the nodal distance can be calculated by applying the delay-based weighted end-to-end approach for traffic analysis. Then the authentic vehicle node can\n be analyzed through the Trust Aware extreme Gradient Boosting Node Classification based Secured Routing (TAXGBNC-SR) Technique. The obtained information that can be stored in the cloud. It deal with the multiple number of tasks gives to the ARM micro-controllers in order to perform the multiple\n tasks that gets logged in the cloud via Internet of Things technology (Iot).","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vehicle Ad Hoc Networks (VANETs) is a crucial communications framework for transferring messages between any healthcare systems. The dilemma of fixing the safest efficient route is a tedious issue in VANET. Hence the secure and most reliable way will give the appropriate solution for the routing issues in the VANET. In this paper, by using the Multi-Objective Bio-inspired Heuristic Cuckoo Search Node optimization algorithm is designed to find the efficient safest route for transferring health data within a short period. After seeing the efficient route, the node can be distinguished upon the traffic and security by using the Stochastic Discriminant Random Forest Node Classifier. Then in the selected route, the nodal distance can be calculated by applying the delay-based weighted end-to-end approach for traffic analysis. Then the authentic vehicle node can be analyzed through the Trust Aware extreme Gradient Boosting Node Classification based Secured Routing (TAXGBNC-SR) Technique. The obtained information that can be stored in the cloud. It deal with the multiple number of tasks gives to the ARM micro-controllers in order to perform the multiple tasks that gets logged in the cloud via Internet of Things technology (Iot).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
车载自组网环境下云端高效安全的远程健康管理
车辆自组织网络(VANETs)是在任何医疗保健系统之间传输消息的关键通信框架。在VANET中,确定最安全有效路线的困境是一个乏味的问题。因此,最安全、最可靠的方法将为VANET中的路由问题提供适当的解决方案。本文采用多目标生物启发式布谷鸟搜索节点优化算法,寻找在短时间内传输健康数据的高效安全路径。在看到有效路由后,利用随机判别随机森林节点分类器根据流量和安全性对节点进行区分。然后在选定的路由中,应用基于时延的加权端到端交通分析方法计算节点距离。然后通过基于信任感知的极端梯度增强节点分类的安全路由(TAXGBNC-SR)技术对真实车辆节点进行分析。获取的信息可以存储在云中。它处理分配给ARM微控制器的多个任务,以便执行通过物联网技术(Iot)登录到云端的多个任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
The Mechanism of Interaction of the Judicial Authority of Ukraine with the Public
IF 0 1Pub Date : 2023-09-07 DOI: 10.26565/1727-6667-2023-1-02
Olena Krutii, Svitlana Klimova
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application Value of CT Perfusion Imaging in Patients with Posterior Circulation Hyperacute Cerebral Infarction An Operative Acute Brain Tumor Recognition by Jointure Inward Unswerving Probabilistic Neural Network Classifier Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation Improved Wavelet Filter Bank Selection for Effective Feature Extraction in Alzheimer Classification An Efficient Approach to Detect Meningioma Brain Tumor Using Adaptive Neuro Fuzzy Inference System Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1