Parallel Least-Squares Policy Iteration

Jun-Kun Wang, Shou-de Lin
{"title":"Parallel Least-Squares Policy Iteration","authors":"Jun-Kun Wang, Shou-de Lin","doi":"10.1109/DSAA.2016.24","DOIUrl":null,"url":null,"abstract":"Inspired by recent progress in parallel and distributed optimization, we propose parallel least-squares policy iteration (parallel LSPI) in this paper. LSPI is a policy iteration method to find an optimal policy for MDPs. As solving MDPs with large state space is challenging and time demanding, we propose a parallel variant of LSPI which is capable of leveraging multiple computational resources. Preliminary analysis of our proposed method shows that the sample complexity improved from O(1/√n) towards O(1/√Mn) for each worker, where n is the number of samples and M is the number of workers. Experiments show the advantages of parallel LSPI comparing to the standard non-parallel one.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"48 59","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inspired by recent progress in parallel and distributed optimization, we propose parallel least-squares policy iteration (parallel LSPI) in this paper. LSPI is a policy iteration method to find an optimal policy for MDPs. As solving MDPs with large state space is challenging and time demanding, we propose a parallel variant of LSPI which is capable of leveraging multiple computational resources. Preliminary analysis of our proposed method shows that the sample complexity improved from O(1/√n) towards O(1/√Mn) for each worker, where n is the number of samples and M is the number of workers. Experiments show the advantages of parallel LSPI comparing to the standard non-parallel one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行最小二乘策略迭代
受并行和分布式优化研究进展的启发,本文提出了并行最小二乘策略迭代(parallel LSPI)。LSPI是一种为mdp寻找最优策略的策略迭代方法。由于求解具有大状态空间的mdp具有挑战性和时间要求,我们提出了一种能够利用多种计算资源的LSPI并行变体。对我们提出的方法的初步分析表明,每个工人的样本复杂度从O(1/√n)提高到O(1/√Mn),其中n为样本数量,M为工人数量。实验证明了并行LSPI与标准非并行LSPI相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Granularity Pattern-Based Sequence Classification Framework for Educational Data Task Composition in Crowdsourcing Maritime Pattern Extraction from AIS Data Using a Genetic Algorithm What Did I Do Wrong in My MOBA Game? Mining Patterns Discriminating Deviant Behaviours Nonparametric Adjoint-Based Inference for Stochastic Differential Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1