Two-dimensional reflective optical encoder based on point source illuminated grating imaging

Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin
{"title":"Two-dimensional reflective optical encoder based on point source illuminated grating imaging","authors":"Hang Chen, Jian Wang, Yue Gao, Cheng-Chih Hsu, Peng Jin, Jie Lin","doi":"10.1117/12.2511441","DOIUrl":null,"url":null,"abstract":"A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2511441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A novel two-dimensional reflective grating encoder is introduced. The optical encoder is developed by a binary amplitude reflective scale grating and a two-dimensional slit displacement sensor, which is fabricated by MEMS technology. Based on Talbot effort, the proposed method can achieve millimetric measurement with high accuracy, where the displacement difference within 0.1% and 0.2% for 1 mm and 20 mm measurement, respectively. By using the eight-segment data division program, the proposed method can easily distinguish 1 μm displacement measurement. Furthermore, in measurement speed tests, the proposed method can reach the movement speed about 5000 μm/s. The experimental results showed the proposed method can achieve high resolution, high speed and long-range measurement, which is potential in the industries and workshops application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于点源照明光栅成像的二维反射式光学编码器
介绍了一种新型的二维反射光栅编码器。采用微机电系统(MEMS)技术,采用二幅反射尺度光栅和二维狭缝位移传感器构成了光学编码器。基于Talbot努力,该方法可以实现高精度的毫米级测量,测量1 mm和20 mm时,位移差值分别在0.1%和0.2%以内。通过八段数据分割程序,该方法可以很容易地分辨出1 μm的位移测量。此外,在测量速度测试中,该方法可达到5000 μm/s左右的移动速度。实验结果表明,该方法可以实现高分辨率、高速度和远程测量,在工业和车间中具有应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel two-dimensional inductive sensor based on planar coils Combining compound eyes and human eye: a hybrid bionic imaging method for FOV extension and foveated vision Measurement of deionized water density based on single silicon sphere Research of variable-frequency big current calibration The optimization of segment’s axial support point for large astronomical telescopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1