Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI

Chi-Hieu Pham, Carlos Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, Nicolas Passat, F. Rousseau
{"title":"Simultaneous Super-Resolution and Segmentation Using a Generative Adversarial Network: Application to Neonatal Brain MRI","authors":"Chi-Hieu Pham, Carlos Tor-Díez, H. Meunier, N. Bednarek, R. Fablet, Nicolas Passat, F. Rousseau","doi":"10.1109/ISBI.2019.8759255","DOIUrl":null,"url":null,"abstract":"Brest, France The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Brest, France The analysis of clinical neonatal brain MRI remains challenging due to low anisotropic resolution of the data. In most pipelines, images are first re-sampled using interpolation or single image super-resolution techniques and then segmented using (semi-)automated approaches. Image reconstruction and segmentation are then performed separately. In this paper, we propose an end-to-end generative adversarial network for simultaneous high-resolution reconstruction and segmentation of brain MRI data. This joint approach is first assessed on the simulated low-resolution images of the high-resolution neonatal dHCP dataset. Then, the learned model is used to enhance and segment real clinical low-resolution images. Results demonstrate the potential of our proposed method with respect to practical medical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时使用生成对抗网络的超分辨率和分割:在新生儿脑MRI中的应用
由于数据的低各向异性分辨率,临床新生儿脑MRI的分析仍然具有挑战性。在大多数管道中,图像首先使用插值或单图像超分辨率技术重新采样,然后使用(半)自动化方法进行分割。然后分别进行图像重建和分割。在本文中,我们提出了一个端到端生成对抗网络,用于脑MRI数据的同时高分辨率重建和分割。这种联合方法首先在高分辨率新生儿dHCP数据集的模拟低分辨率图像上进行评估。然后,使用学习到的模型对真实临床低分辨率图像进行增强和分割。结果证明了我们提出的方法在实际医学应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1