Ripple Effect: an Improved Geographic Routing with Local Connectivity Information

Ming Li
{"title":"Ripple Effect: an Improved Geographic Routing with Local Connectivity Information","authors":"Ming Li","doi":"10.1109/ATNAC.2008.4783332","DOIUrl":null,"url":null,"abstract":"One of the key challenges in geographic routing is how to deal with dead-ends, where greedy routing fails to find a neighbor node which is closer to the destination. Most existing geographic routing algorithms just switch to the deterministic face routing or limits its face searching range. In this paper, we demonstrate that we can improve routing performance by considering local connectivity status at each node before making routing decision. We present a protocol, Density Ripple Exchange (DRE), that maintains local density information at each node, and a new geographic routing algorithm, Geographic Ripple Routing (GRR), that achieves better routing performance in both hop stretch and transmission stretch than existing geographic routing algorithms by exploiting available connectivity information. Our simulations demonstrate that we increased the performance for GRR over Greedy Perimeter Stateless Routing (GPSR) by about 15%. The cost of this improved performance is a small amount of additional local connectivity information required for our algorithm.","PeriodicalId":143803,"journal":{"name":"2008 Australasian Telecommunication Networks and Applications Conference","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Australasian Telecommunication Networks and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATNAC.2008.4783332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the key challenges in geographic routing is how to deal with dead-ends, where greedy routing fails to find a neighbor node which is closer to the destination. Most existing geographic routing algorithms just switch to the deterministic face routing or limits its face searching range. In this paper, we demonstrate that we can improve routing performance by considering local connectivity status at each node before making routing decision. We present a protocol, Density Ripple Exchange (DRE), that maintains local density information at each node, and a new geographic routing algorithm, Geographic Ripple Routing (GRR), that achieves better routing performance in both hop stretch and transmission stretch than existing geographic routing algorithms by exploiting available connectivity information. Our simulations demonstrate that we increased the performance for GRR over Greedy Perimeter Stateless Routing (GPSR) by about 15%. The cost of this improved performance is a small amount of additional local connectivity information required for our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涟漪效应:一种具有本地连接信息的改进地理路由
由于贪心路由无法找到距离目的地更近的邻居节点,因此如何处理死角是地理路由的关键问题之一。现有的地理路由算法大多只是切换到确定性的人脸路由或限制其人脸搜索范围。在本文中,我们证明了在做出路由决策之前考虑每个节点的本地连接状态可以提高路由性能。我们提出了一种协议,密度纹波交换(DRE),它在每个节点上维护本地密度信息,以及一种新的地理路由算法,地理纹波路由(GRR),它通过利用可用的连接信息,在跳长和传输长方面都比现有的地理路由算法实现了更好的路由性能。仿真结果表明,GRR算法的性能比贪婪边界无状态路由(GPSR)算法提高了约15%。这种性能改进的代价是我们的算法需要少量额外的本地连接信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bluetooth Information Exchange Network Identification of Malicious Web Pages with Static Heuristics Self-restraint Admission Control for adhoc WLANs Voice Activity Detection Using Entropy in Spectrum Domain Performance Improvement of Cooperative Relaying Scheme Based on OFCDM in UWB Channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1