Predicting user attitudes toward smartphone ads using support vector machine

Kang-Woo Lee, Hyunseung Choo
{"title":"Predicting user attitudes toward smartphone ads using support vector machine","authors":"Kang-Woo Lee, Hyunseung Choo","doi":"10.1504/IJMC.2016.076272","DOIUrl":null,"url":null,"abstract":"This study presents a computational model of smartphone ads that uses support vector machine SVM. The model is used to simulate the well-known social phenomenon of 'similarity attraction,' which we analysed using both regression and pattern classification models. Smartphone call patterns were used to predict user personality for the given smartphone call patterns and ad types extrovert or introvert, the model simulated the similarity attraction effect and predicted user attitudes toward the smartphone ad in terms of likeability, credibility and buying intention. The results indicated that the SVM model is a powerful tool for simulating similarity attraction and correctly classifies user attitude. The computational implication of the model is discussed in terms of customisation and persuasiveness.","PeriodicalId":433337,"journal":{"name":"Int. J. Mob. Commun.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Mob. Commun.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMC.2016.076272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This study presents a computational model of smartphone ads that uses support vector machine SVM. The model is used to simulate the well-known social phenomenon of 'similarity attraction,' which we analysed using both regression and pattern classification models. Smartphone call patterns were used to predict user personality for the given smartphone call patterns and ad types extrovert or introvert, the model simulated the similarity attraction effect and predicted user attitudes toward the smartphone ad in terms of likeability, credibility and buying intention. The results indicated that the SVM model is a powerful tool for simulating similarity attraction and correctly classifies user attitude. The computational implication of the model is discussed in terms of customisation and persuasiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支持向量机预测用户对智能手机广告的态度
本研究提出了一种基于支持向量机的智能手机广告计算模型。该模型用于模拟众所周知的“相似性吸引”社会现象,我们使用回归模型和模式分类模型对其进行了分析。利用智能手机通话模式预测用户性格,在给定的智能手机通话模式和广告类型为外向或内向的情况下,模拟相似吸引效应,预测用户对智能手机广告的好感度、可信度和购买意愿。结果表明,支持向量机模型是模拟相似吸引的有力工具,能够正确地对用户态度进行分类。从可定制性和说服力两个方面讨论了该模型的计算含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The influence mechanisms of platform on supply-side behaviour: a longitudinal investigation on taxi drivers' adoption of a ride-hailing app Mobile information security management for small organisation technology upgrades: the policy-driven approach and the evolving implementation approach The glamorous world: how Instagram use is related to affluence estimates, materialism, and self-esteem A survey of what customers want in smartwatch brand applications Enhancing the performance of service discovery protocol using minimum spanning tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1