Linear Regression for Prosody Prediction via Convex Optimization

Ling Cen, M. Dong, P. Chan
{"title":"Linear Regression for Prosody Prediction via Convex Optimization","authors":"Ling Cen, M. Dong, P. Chan","doi":"10.1109/IALP.2011.75","DOIUrl":null,"url":null,"abstract":"In this paper, a L1 regularized linear regression based method is proposed to model the relationship between the linguistic features and prosodic parameters in Text-to-Speech (TTS) synthesis. By formulating prosodic prediction as a convex problem, it can be solved using very efficient numerical method. The performance can be similar to that of the Classification and Regression Tree (CART), a widely used approach for prosodic prediction. However, the computational load can be as low as 76% of that required by CART.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a L1 regularized linear regression based method is proposed to model the relationship between the linguistic features and prosodic parameters in Text-to-Speech (TTS) synthesis. By formulating prosodic prediction as a convex problem, it can be solved using very efficient numerical method. The performance can be similar to that of the Classification and Regression Tree (CART), a widely used approach for prosodic prediction. However, the computational load can be as low as 76% of that required by CART.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于凸优化的韵律预测线性回归
本文提出了一种基于L1正则化线性回归的文本到语音合成中语言特征与韵律参数之间关系的建模方法。通过将韵律预测表述为一个凸问题,它可以用非常有效的数值方法来求解。其性能可以类似于分类回归树(CART),这是一种广泛使用的韵律预测方法。然而,计算负载可以低至CART所需的76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1