Detecting Low Surface Brightness Galaxies with Mask R-CNN

Caleb C. Levy, A. Ćiprijanović, A. Drlica-Wagner, B. Mutlu-Pakdil, B. Nord, D. Tanoglidis
{"title":"Detecting Low Surface Brightness Galaxies with Mask R-CNN","authors":"Caleb C. Levy, A. Ćiprijanović, A. Drlica-Wagner, B. Mutlu-Pakdil, B. Nord, D. Tanoglidis","doi":"10.2172/1825283","DOIUrl":null,"url":null,"abstract":"Low surface brightness galaxies (LSBGs), galaxies that are fainter than the dark night sky, are famously difficult to detect. Nonetheless, studies of these galaxies are essential to improve our understanding of the formation and evolution of low-mass galaxies. In this work, we train a deep learning model using the Mask R-CNN framework on a set of simulated LSBGs inserted into images from the Dark Energy Survey (DES) Data Release 2 (DR2). This deep learning model is combined with several conventional image pre-processing steps to develop a pipeline for the detection of LSBGs. We apply this pipeline to the full DES DR2 coadd image dataset, and preliminary results show the detection of 22 large, high-quality LSBG candidates that went undetected by conventional algorithms. Furthermore, we find that the performance of our algorithm is greatly improved by including examples of false positives as an additional class during training","PeriodicalId":225866,"journal":{"name":"Detecting Low Surface Brightness Galaxies with Mask R-CNN","volume":"165 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Detecting Low Surface Brightness Galaxies with Mask R-CNN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1825283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Low surface brightness galaxies (LSBGs), galaxies that are fainter than the dark night sky, are famously difficult to detect. Nonetheless, studies of these galaxies are essential to improve our understanding of the formation and evolution of low-mass galaxies. In this work, we train a deep learning model using the Mask R-CNN framework on a set of simulated LSBGs inserted into images from the Dark Energy Survey (DES) Data Release 2 (DR2). This deep learning model is combined with several conventional image pre-processing steps to develop a pipeline for the detection of LSBGs. We apply this pipeline to the full DES DR2 coadd image dataset, and preliminary results show the detection of 22 large, high-quality LSBG candidates that went undetected by conventional algorithms. Furthermore, we find that the performance of our algorithm is greatly improved by including examples of false positives as an additional class during training
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掩模R-CNN探测低表面亮度星系
低表面亮度星系(LSBGs),比黑暗的夜空更暗的星系,是出了名的难以探测。尽管如此,对这些星系的研究对于提高我们对低质量星系的形成和演化的理解是必不可少的。在这项工作中,我们使用Mask R-CNN框架在一组插入暗能量调查(DES)数据发布2 (DR2)图像的模拟lsbg上训练了一个深度学习模型。该深度学习模型与几个传统的图像预处理步骤相结合,开发了一个检测lsdb的管道。我们将该管道应用于完整的DES DR2编码图像数据集,初步结果显示检测到22个传统算法无法检测到的大型高质量LSBG候选者。此外,我们发现通过在训练期间将误报示例作为附加类,我们的算法的性能得到了极大的提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Low Surface Brightness Galaxies with Mask R-CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1