PET and MRI brain image fusion using wavelet transform with structural information adjustment and spectral information patching

P. Huang, Cheng-I Chen, P. Lin, Ping Chen, Lipin Hsu
{"title":"PET and MRI brain image fusion using wavelet transform with structural information adjustment and spectral information patching","authors":"P. Huang, Cheng-I Chen, P. Lin, Ping Chen, Lipin Hsu","doi":"10.1109/ISBB.2014.6820901","DOIUrl":null,"url":null,"abstract":"In this paper, we present a PET and MR brain image fusion method based on wavelet transform for low- and high-activity brain image regions, respectively. Our method can generate very good fusion result by adjusting the anatomical structural information in the gray matter (GM) area, and then patching the spectral information in the white matter (WM) area after the wavelet decomposition and gray-level fusion. We used normal axial, normal coronal, and Alzheimer's disease brain images as the three datasets for testing and comparison. Experimental results showed that the performance of our fusion method is better than that of IHS+RIM fusion method in terms of spectral discrepancy (SD) and average gradient (AG). In fact, our method is superior to IHS+RIM method both visually and quantitatively.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we present a PET and MR brain image fusion method based on wavelet transform for low- and high-activity brain image regions, respectively. Our method can generate very good fusion result by adjusting the anatomical structural information in the gray matter (GM) area, and then patching the spectral information in the white matter (WM) area after the wavelet decomposition and gray-level fusion. We used normal axial, normal coronal, and Alzheimer's disease brain images as the three datasets for testing and comparison. Experimental results showed that the performance of our fusion method is better than that of IHS+RIM fusion method in terms of spectral discrepancy (SD) and average gradient (AG). In fact, our method is superior to IHS+RIM method both visually and quantitatively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用小波变换对PET和MRI脑图像进行结构信息调整和光谱信息拼接
本文提出了一种基于小波变换的PET和MR脑图像融合方法,分别对脑图像的低活动区域和高活动区域进行融合。该方法首先对脑灰质(GM)区域的解剖结构信息进行调整,然后对脑白质(WM)区域的光谱信息进行小波分解和灰度融合,得到很好的融合效果。我们使用正常的轴状、冠状和阿尔茨海默病脑图像作为三个数据集进行测试和比较。实验结果表明,我们的融合方法在光谱差异(SD)和平均梯度(AG)方面优于IHS+RIM融合方法。事实上,我们的方法在视觉上和数量上都优于IHS+RIM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stereoscopic laparoscopy using depth information from 3D model Analysis of the multiple ultrasound echoes for measurement of cortical bone thickness Smart cane: Instrumentation of a quad cane with audio-feedback monitoring system for partial weight-bearing support A low power high CMRR CMOS instrumentation amplifier for Bio-impedance Spectroscopy A novel approach for ECG data compression in healthcare monitoring system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1