Net level aggregation using nonlinear optimization for the solution of hierarchical GSPN in performance evaluation

G. Klas
{"title":"Net level aggregation using nonlinear optimization for the solution of hierarchical GSPN in performance evaluation","authors":"G. Klas","doi":"10.1109/CMPEUR.1992.218465","DOIUrl":null,"url":null,"abstract":"An approach for the hierarchical solution of large generalized stochastic Petri net models is presented. The method is based on the aggregation of submodels to substitute networks. The stochastic equivalence between these models is achieved by matching the flow time distributions of tokens in the submodel and in the aggregate net. This leads to a nonlinear optimization problem for finding the best aggregate net. As the main result, some insight is provided into the crucial point of estimating the parameters of a suitable aggregate net from a flow time distribution of the original net. The approach is demonstrated by means of an example.<<ETX>>","PeriodicalId":390273,"journal":{"name":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompEuro 1992 Proceedings Computer Systems and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPEUR.1992.218465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An approach for the hierarchical solution of large generalized stochastic Petri net models is presented. The method is based on the aggregation of submodels to substitute networks. The stochastic equivalence between these models is achieved by matching the flow time distributions of tokens in the submodel and in the aggregate net. This leads to a nonlinear optimization problem for finding the best aggregate net. As the main result, some insight is provided into the crucial point of estimating the parameters of a suitable aggregate net from a flow time distribution of the original net. The approach is demonstrated by means of an example.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非线性优化的网络级聚合方法求解分层GSPN的性能评价
提出了一种大型广义随机Petri网模型的分层求解方法。该方法基于子模型的聚合来替代网络。通过匹配子模型和聚合网络中令牌的流动时间分布,实现了这些模型之间的随机等价。这导致了寻找最佳聚合网络的非线性优化问题。作为主要结果,对从原始网的流动时间分布估计合适的聚合网参数的关键点提供了一些见解。最后通过一个算例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural clustering algorithms for classification and pre-placement of VLSI cells General-to-specific learning of Horn clauses from positive examples Minimization of NAND circuits by rewriting-rules heuristic A generalized stochastic Petri net model of Multibus II Activation of connections to accelerate the learning in recurrent back-propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1