Multipath Ghost Target Identification for Automotive MIMO Radar

Yunda Li, Xiaolei Shang
{"title":"Multipath Ghost Target Identification for Automotive MIMO Radar","authors":"Yunda Li, Xiaolei Shang","doi":"10.1109/VTC2022-Fall57202.2022.10012904","DOIUrl":null,"url":null,"abstract":"We consider the problem of angle estimation and ghost target identification for automotive multiple-input multiple-output (MIMO) radar in multipath scenarios. Firstly, we establish the multipath propagation model for the case of horizental MIMO arrays, and divide the multipath into two categories, i.e., Type 1: multipath with direction-of-arrival (DOA) $\\neq$ direction-of-departure (DOD); Type 2: multipath with DOA$=$DOD. In the presence of multipath, the different DOA and DOD angles corrupt the notion of virtual array for MIMO radar, making angle estimation a major challenge. To jointly estimate the DOA and DOD of the target reflections, including both the direct path and multipath scenarios, we introduce a multipath iterative adaptive approach (MP-IAA), which possesses the super resolution, low sidelobe level, and robust properties for DOA and DOD estimation. Then, the Type 1 multipath with DOA$\\neq$DOD can be directly identified based on the MP-IAA’s DOA and DOD estimates. Regarding to the Type 2 multipath with DOA$=$DOD, we solve the triangle relationships to identify the corresponding ghost targets. Numerical examples are provided to demonstrate the effectiveness of the proposed algorithm for angle estimation and ghost target identification using automotive MIMO radar.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider the problem of angle estimation and ghost target identification for automotive multiple-input multiple-output (MIMO) radar in multipath scenarios. Firstly, we establish the multipath propagation model for the case of horizental MIMO arrays, and divide the multipath into two categories, i.e., Type 1: multipath with direction-of-arrival (DOA) $\neq$ direction-of-departure (DOD); Type 2: multipath with DOA$=$DOD. In the presence of multipath, the different DOA and DOD angles corrupt the notion of virtual array for MIMO radar, making angle estimation a major challenge. To jointly estimate the DOA and DOD of the target reflections, including both the direct path and multipath scenarios, we introduce a multipath iterative adaptive approach (MP-IAA), which possesses the super resolution, low sidelobe level, and robust properties for DOA and DOD estimation. Then, the Type 1 multipath with DOA$\neq$DOD can be directly identified based on the MP-IAA’s DOA and DOD estimates. Regarding to the Type 2 multipath with DOA$=$DOD, we solve the triangle relationships to identify the corresponding ghost targets. Numerical examples are provided to demonstrate the effectiveness of the proposed algorithm for angle estimation and ghost target identification using automotive MIMO radar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车MIMO雷达多径幽灵目标识别
研究了汽车多输入多输出(MIMO)雷达在多路径场景下的角度估计和鬼目标识别问题。首先,我们建立了水平MIMO阵列的多路径传播模型,并将多路径分为两类:第一类:到达方向(DOA) $\neq$出发方向(DOD)的多路径;类型2:DOA$=$DOD的多路径。在多径环境下,不同的DOA和DOD角度破坏了MIMO雷达虚拟阵列的概念,使角度估计成为一个重大挑战。为了联合估计直接路径和多路径情况下目标反射的DOA和DOD,提出了一种具有超分辨率、低旁瓣电平和鲁棒性的多路径迭代自适应方法(MP-IAA)。然后,基于MP-IAA的DOA和DOD估计,可以直接识别DOA$\neq$DOD的Type 1多路径。对于DOA$=$DOD的2型多路径,我们通过求解三角关系来识别相应的鬼目标。数值算例验证了该算法在车载MIMO雷达角度估计和鬼影目标识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1