Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung, C. Kintala
{"title":"Checkpointing and its applications","authors":"Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu Chung, C. Kintala","doi":"10.1109/FTCS.1995.466999","DOIUrl":null,"url":null,"abstract":"The paper describes our experience with the implementation and applications of the Unix checkpointing library libckp, and identifies two concepts that have proven to be the key to making checkpointing a powerful tool. First, including all persistent states, i.e., user files, as part of the process state that can be checkpointed and recovered provides a truly transparent and consistent rollback. Second, excluding part of the persistent state from the process state allows user programs to process future inputs from a desirable state, which leads to interesting new applications of checkpointing. We use real-life examples to demonstrate the use of libckp for bypassing premature software exits, for fast initialization and for memory rejuvenation.<<ETX>>","PeriodicalId":309075,"journal":{"name":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"209","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1995.466999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 209
Abstract
The paper describes our experience with the implementation and applications of the Unix checkpointing library libckp, and identifies two concepts that have proven to be the key to making checkpointing a powerful tool. First, including all persistent states, i.e., user files, as part of the process state that can be checkpointed and recovered provides a truly transparent and consistent rollback. Second, excluding part of the persistent state from the process state allows user programs to process future inputs from a desirable state, which leads to interesting new applications of checkpointing. We use real-life examples to demonstrate the use of libckp for bypassing premature software exits, for fast initialization and for memory rejuvenation.<>