Performance Evaluation of Tile Coding in Reinforcement Learning

Kenji Ota, T. Ozeki
{"title":"Performance Evaluation of Tile Coding in Reinforcement Learning","authors":"Kenji Ota, T. Ozeki","doi":"10.1145/2814940.2814975","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is one of research fields in artificial intelligence. The learning method usually assumes a discrete state in computer simulations. However, we must treat a continuous value in a realistic situation. In this paper, we investigate various techniques of the tile cording scheme which is a representative technique to handle continuous states. We check the performance of single tiling, multiple tiling, time-shift method and the proposed method in the issue of space search.","PeriodicalId":427567,"journal":{"name":"Proceedings of the 3rd International Conference on Human-Agent Interaction","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2814940.2814975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Reinforcement learning is one of research fields in artificial intelligence. The learning method usually assumes a discrete state in computer simulations. However, we must treat a continuous value in a realistic situation. In this paper, we investigate various techniques of the tile cording scheme which is a representative technique to handle continuous states. We check the performance of single tiling, multiple tiling, time-shift method and the proposed method in the issue of space search.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贴图编码在强化学习中的性能评价
强化学习是人工智能的研究领域之一。在计算机模拟中,学习方法通常假定为离散状态。然而,我们必须在现实情况下对待连续值。本文研究了具有代表性的连续状态处理技术瓦片编码方案的各种技术。在空间搜索问题上,对单次平铺法、多次平铺法、时移法和所提方法的性能进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Disaster Early Warning via a Configurable Data Collection Framework and Real-time Analytics Personification Aspect of Conversational Agents as Representations of a Physical Object Effects of Behavioral Complexity on Intention Attribution to Robots Spatial Communication and Recognition in Human-agent Interaction using Motion-parallax-based 3DCG Virtual Agent EEG Analysis on 3D Navigation in Virtual Realty with Different Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1